Shadowing for actions of some finitely generated groups

被引:30
作者
Osipov, Alexey V. [1 ,2 ]
Tikhomirov, Sergey B. [1 ,3 ,4 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, Chebyshev Lab, St Petersburg 199178, Russia
[2] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio de Giorgi, I-56100 Pisa, Italy
[3] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[4] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2014年 / 29卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
shadowing; expansivity; group action; nilpotent group; solvable group; free group; ORBIT-TRACING-PROPERTY; EXPANSIVE HOMEOMORPHISMS; MULTIDIMENSIONAL TIME;
D O I
10.1080/14689367.2014.902037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a notion of shadowing property for actions of finitely generated groups and study its basic properties. We formulate and prove a shadowing lemma for actions of nilpotent groups. We construct an example of a faithful linear action of a solvable Baumslag-Solitar group and show that the shadowing property depends on quantitative characteristics of hyperbolicity. Finally, we show that any linear action of a non-abelian free group does not have the shadowing property.
引用
收藏
页码:337 / 351
页数:15
相关论文
共 27 条
  • [1] Akin E., 1993, GRADUATE STUDIES MAT, V1
  • [2] [Anonymous], 1975, LECT NOTES MATH
  • [3] Anosov D.V., 1970, P 5 INT C NONL OSC, V2, P39
  • [4] Aoki N., 1989, Topics in General Topology, P625
  • [5] Aoki N, 1994, RECETN ADV, V52
  • [6] Algebraic Anosov actions of nilpotent Lie groups
    Barbot, Thierry
    Maquera, Carlos
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (01) : 199 - 219
  • [7] Bechtell H., 1971, The Theory of Groups
  • [8] Analogues of Takens' Theorems for Generalized Actions of the Group Z(infinity)
    Begun, N. A.
    Pilyugin, S. Yu
    [J]. VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2010, 43 (04) : 198 - 203
  • [9] Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
  • [10] de la Harpe P., 2000, Chicago Lectures in Mathematics