The boundary at infinity of the curve complex and the relative Teichmuller space

被引:6
作者
Klarreich, Erica [1 ]
机构
[1] 1627 Blake St, Berkeley, CA 94703 USA
关键词
Curve complex; boundary at infinity; relative Teichm?ller space; measured foliation; GEODESICS; GEOMETRY; LENGTH; ENDS;
D O I
10.4171/GGD/662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the boundary at infinity of the curve complex symbolscript of a surface symbolscript of finite type and the relative Teichmuller space symbolscript obtained from the Teichmuller space by collapsing each region where a simple closed curve is short to be a set of diameter 1. symbolscript and symbolscript are quasi-isometric, and Masur-Minsky have shown that symbolscript and symbolscript are hyperbolic in the sense of Gromov. We show that the boundary at infinity of symbolscript and symbolscript is the space of topological equivalence classes of minimal foliations on symbolscript
引用
收藏
页码:705 / 723
页数:19
相关论文
共 25 条
  • [1] Bedford T., 1991, ERGODIC THEORY SYMBO
  • [2] Bers L., 1970, LECT NOTES MATH, V155, P9
  • [3] ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3
    BONAHON, F
    [J]. ANNALS OF MATHEMATICS, 1986, 124 (01) : 71 - 158
  • [4] Canary R. D., 1993, J. Am. Math. Soc., V6, P1
  • [5] COORNAERT M, 1990, LECT NOTES MATH, V1441, pR9
  • [6] Farb B., 1994, Relatively hyperbolic and automatic groups with applications to negatively curved manifolds
  • [7] Fathi A., 1979, ASTERISQUE, P66
  • [8] Ghys, 1990, PROGR MATH, V83
  • [9] GROMOV MIKHAEL, 1987, ESSAYS GROUP THEORY, V8, P75, DOI [DOI 10.1007/978-1-4613-9586-7_3, 10.1007/978-1-4613-9586-7_3]
  • [10] HARVEY WJ, 1981, ANN MATH STUD, P245