Data assimilation finite element method for the linearized Navier-Stokes equations in the low Reynolds regime

被引:7
|
作者
Boulakia, Muriel [1 ,2 ,3 ]
Burman, Erik [4 ]
Fernandez, Miguel A. [1 ,2 ,3 ]
Voisembert, Colette [1 ,2 ,3 ]
机构
[1] Sorbonne Univ, F-75005 Paris, France
[2] CNRS, UMR LJLL 7598, F-75005 Paris, France
[3] Inria Paris, F-75012 Paris, France
[4] UCL, Dept Math, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
linearized Navier-Stokes' equations; data assimilation; stabilized finite element methods; three balls inequality; error estimates; QUASI-REVERSIBILITY; LEAST-SQUARES; UNIQUENESS; SOLVE;
D O I
10.1088/1361-6420/ab9161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in designing and analyzing a finite element data assimilation method for laminar steady flow described by the linearized incompressible Navier-Stokes equation. We propose a weakly consistent stabilized finite element method which reconstructs the whole fluid flow from noisy velocity measurements in a subset of the computational domain. Using the stability of the continuous problem in the form of a three balls inequality, we derive quantitative local error estimates for the velocity. Numerical simulations illustrate these convergence properties and we finally apply our method to the flow reconstruction in a blood vessel.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A new defect correction method for the Navier-Stokes equations at high Reynolds numbers
    Wang, Kun
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3252 - 3264
  • [22] Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations
    Biswas, Animikh
    Foias, Ciprian
    Mondaini, Cecilia F.
    Titi, Edriss S.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02): : 295 - 326
  • [23] Low-order stabilized finite element methods for the unsteady Stokes/Navier-Stokes equations with friction boundary conditions
    Qiu, Hailong
    Xue, Changfeng
    Xue, Liang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) : 2119 - 2139
  • [24] Higher order spectral/hp finite element models of the Navier-Stokes equations
    Vallalaa, V. P.
    Sadr, R.
    Reddy, J. N.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2014, 28 (1-2) : 16 - 30
  • [25] Error estimates of finite element methods for fractional stochastic Navier-Stokes equations
    Li, Xiaocui
    Yang, Xiaoyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [26] Data assimilation for the Navier-Stokes-α equations
    Korn, Peter
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (18) : 1957 - 1974
  • [27] Least squares finite element method with high continuity NURBS basis for incompressible Navier-Stokes equations
    Chen, De-Xiang
    Xu, Zi-Li
    Liu, Shi
    Feng, Yong-Xin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 260 : 204 - 221
  • [28] A defect-correction stabilized finite element method for Navier-Stokes equations with friction boundary conditions
    Qiu, Hailong
    Mei, Liquan
    Liu, Hui
    Cartwright, Stephen
    APPLIED NUMERICAL MATHEMATICS, 2015, 90 : 9 - 21
  • [29] CONVERGENCE OF A MOBILE DATA ASSIMILATION SCHEME FOR THE 2D NAVIER-STOKES EQUATIONS
    Biswas, Animikh
    Bradshaw, Zachary
    Jolly, Michael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, : 4042 - 4068
  • [30] Inverse source problem for linearized Navier-Stokes equations with data in arbitrary sub-domain
    Choulli, Mourad
    Imanuvilov, Oleg Yu.
    Puel, Jean-Pierre
    Yamamoto, Masahiro
    APPLICABLE ANALYSIS, 2013, 92 (10) : 2127 - 2143