Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions

被引:20
作者
Holm, Darryl D. [1 ,2 ]
Tronci, Cesare [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
[3] TERA Fdn Oncol Hadrontherapy, I-28100 Novara, Italy
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 465卷 / 2102期
关键词
geodesic flow; semidirect product; Kaluza-Klein construction; CAMASSA-HOLM EQUATION; VARIABLES; DYNAMICS;
D O I
10.1098/rspa.2008.0263
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The EPDiff equation (or the dispersionless Camassa-Holm equation in one dimension) is a well-known example of geodesic motion on the Diff group of smooth invertible maps (diffeomorphisms). Its recent two-component extension governs geodesic motion on the semidirect product Diff(S)F, where F denotes the space of scalar functions. This paper generalizes the second construction to consider geodesic motion on Diff(S)g, where g denotes the space of scalar functions that take values on a certain Lie algebra (e. g. g = F circle times so(3)). Measure-valued delta-like solutions are shown to be momentum maps possessing a dual pair structure, thereby extending previous results for the EPDiff equation. The collective Hamiltonians are shown to fit into the Kaluza-Klein theory of particles in a Yang-Mills field and these formulations are shown to apply also at the continuum partial differential equation level. In the continuum description, the Kaluza-Klein approach produces the Kelvin circulation theorem.
引用
收藏
页码:457 / 476
页数:20
相关论文
共 25 条
[1]  
[Anonymous], 1999, INTRO MECH SYMMETRY
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [10.1007/978-1-4757-1693-1, DOI 10.1007/978-1-4757-1693-1]
[3]  
BENNEY DJ, 1973, STUD APPL MATH, V52, P45
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]   A two-component generalization of the Camassa-Holm equation and its solutions [J].
Chen, M ;
Liu, SQ ;
Zhang, YJ .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :1-15
[6]   On a Camassa-Holm type equation with two dependent variables [J].
Falqui, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (02) :327-342
[7]   The Navier-Stokes-alpha model of fluid turbulence [J].
Foias, C ;
Holm, DD ;
Titi, ES .
PHYSICA D, 2001, 152 :505-519
[8]   The geometric structure of complex fluids [J].
Gay-Balmaz, Francois ;
Ratiu, Tudor S. .
ADVANCES IN APPLIED MATHEMATICS, 2009, 42 (02) :176-275
[9]   COLLISIONLESS BOLTZMANN EQUATIONS AND INTEGRABLE MOMENT EQUATIONS [J].
GIBBONS, J .
PHYSICA D, 1981, 3 (03) :503-511
[10]  
GIBBONS J, 1982, PHYSICA D, V83, P179, DOI DOI 10.1016/0167-2789(83)90004-0