Multiple solutions for a superlinear p-Laplacian equation with concave nonlinearities

被引:3
作者
Sun, Mingzheng [1 ,2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
p-Laplacian; Morse theory; concave nonlinearities MSC (2010) 35J35; 35J60; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.1002/mana.201100332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a superlinear p-Laplacian equation with concave nonlinearities, and by Morse theory we can obtain multiple nontrivial solutions of this equation.
引用
收藏
页码:941 / 948
页数:8
相关论文
共 16 条
[1]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   SOME RESULTS ABOUT THE EXISTENCE OF A 2ND POSITIVE SOLUTION IN A QUASI-LINEAR CRITICAL PROBLEM [J].
AZORERO, JG ;
ALONSO, IP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) :941-957
[4]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[5]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[6]  
Chang K.-C., 1993, INFIN DIMENS ANAL QU, DOI DOI 10.1007/978-1-4612-0385-8
[7]  
CHANG KC, 1994, CR ACAD SCI I-MATH, V319, P441
[8]   Multiple solutions for some elliptic equations with a nonlinearity concave at the origin [J].
de Paiva, Francisco Odair ;
Massa, Eugenio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) :2940-2946
[9]  
de Paiva FO, 2009, TOPOL METHOD NONL AN, V34, P77
[10]  
Dinca G., 2001, Portugaliae Mathematica. Nova Serie, V58, P339