Contextual Subpixel Mapping of Hyperspectral Images Making Use of a High Resolution Color Image

被引:28
|
作者
Mahmood, Zahid [1 ]
Akhter, Muhammad Awais [1 ]
Thoonen, Guy [1 ]
Scheunders, Paul [1 ]
机构
[1] Univ Antwerp, IBBT Vis Lab, Dept Phys, Antwerp, Belgium
关键词
Hyperspectral data; fusion; subpixel mapping; superresolution; spectral unmixing; SPECTRAL MIXTURE ANALYSIS; NEURAL-NETWORK; ALGORITHM; CLASSIFICATION;
D O I
10.1109/JSTARS.2012.2236539
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a hyperspectral image classification method to obtain classification maps at a finer resolution than the image's original resolution. We assume that a complementary color image of high spatial resolution is available. The proposed methodology consists of a soft classification procedure to obtain landcover fractions, followed by a subpixel mapping of these fractions. While the main contribution of this article is in fact the complete multisource framework for obtaining a subpixel map, the major novelty of this subpixel mapping approach is the inclusion of contextual information, obtained from the color image. Experiments, conducted on two hyperspectral images and one real multisource data set, show excellent results, when compared to classification of the hyperspectral data only. The advantage of the contextual approach, compared to conventional subpixel mapping approaches, is clearly demonstrated.
引用
收藏
页码:779 / 791
页数:13
相关论文
共 50 条
  • [31] Urban land use mapping using high resolution SAR data based on density analysis and contextual information
    Chen, Zhaohua
    Zhang, Ying
    Guindon, Bert
    Esch, Thomas
    Roth, Achim
    Shang, Jiali
    CANADIAN JOURNAL OF REMOTE SENSING, 2012, 38 (06) : 738 - 749
  • [32] Multi-resolution least-squares spectral unmixing algorithm for subpixel classification of hyperspectral images
    Barducci, A
    Mecocci, A
    Alamanno, C
    Pippi, I
    Marcoionni, P
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1799 - 1801
  • [33] Combination of super-resolution reconstruction and SGA-Net for marsh vegetation mapping using multi-resolution multispectral and hyperspectral images
    Fu, Bolin
    Sun, Xidong
    Li, Yuyang
    Lao, Zhinan
    Deng, Tengfang
    He, Hongchang
    Sun, Weiwei
    Zhou, Guoqing
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 2724 - 2761
  • [34] HYPERSPECTRAL IMAGE SUPER RESOLUTION RECONSTRUCTION WITH A JOINT SPECTRAL-SPATIAL SUB-PIXEL MAPPING MODEL
    Xu, Xiong
    Tong, Xiaohua
    Li, Jie
    Xie, Huan
    Zhong, Yanfei
    Zhang, Liangpei
    Song, Dongmei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6129 - 6132
  • [35] Universal high spatial resolution hyperspectral imaging using hybrid-resolution image fusion
    Cao, Xuheng
    Lian, Yusheng
    Liu, Zilong
    Zhou, Han
    Wang, Bin
    Hunag, Beiqing
    Zhang, Wan
    OPTICAL ENGINEERING, 2023, 62 (03)
  • [36] Unmixing-based Fusion of Hyperspectral Images with High Spatial Resolution Images
    Gercek, Deniz
    Cesmeci, Davut
    Gullu, Mehmet Kemal
    Erturk, Alp
    Erturk, Sarp
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [37] USE SATELLITE IMAGES AND IMPROVE THE ACCURACY OF HYPERSPECTRAL IMAGE WITH THE CLASSIFICATION
    Javadi, Peyman
    INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 343 - 349
  • [38] BENTHIC MAPPING USING HIGH RESOLUTION MULTISPECTRAL AND HYPERSPECTRAL IMAGERY
    Marcello, J.
    Eugenio, F.
    Marques, F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1535 - 1538
  • [39] Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping
    Priem, Frederik
    Canters, Frank
    REMOTE SENSING, 2016, 8 (10)
  • [40] Spatial Resolution Enhancement Mapping of Hyperspectral Image via Pixel Filling Algorithm
    N. Prabhu
    Manoj K. Arora
    R. Balasubramanian
    Journal of the Indian Society of Remote Sensing, 2020, 48 : 385 - 395