Determining error bounds for spectral filtering based reconstruction methods in privacy preserving data mining

被引:10
作者
Guo, Songtao [1 ]
Wu, Xintao [1 ]
Li, Yingjiu [2 ]
机构
[1] Univ N Carolina, Dept Software & Informat Syst, Charlotte, NC 28223 USA
[2] Singapore Management Univ, Sch Informat Syst, Singapore 28223, Singapore
基金
美国国家科学基金会;
关键词
Privacy preserving; Spectral filtering; Disclosure analysis; Error bound analysis;
D O I
10.1007/s10115-008-0123-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Additive randomization has been a primary tool for hiding sensitive private information. Previous work empirically showed that individual data values can be approximately reconstructed from the perturbed values, using spectral filtering techniques. This poses a serious threat of privacy breaches. In this paper we conduct a theoretical study on how the reconstruction error varies, for different types of additive noise. In particular, we first derive an upper bound for the reconstruction error using matrix perturbation theory. Attackers who use spectral filtering techniques to estimate the true data values may leverage this bound to determine how close their estimates are to the original data. We then derive a lower bound for the reconstruction error, which can help data owners decide how much noise should be added to satisfy a given threshold of the tolerated privacy breach.
引用
收藏
页码:217 / 240
页数:24
相关论文
共 23 条
[1]  
ADAM NR, 1989, COMPUT SURV, V21, P515, DOI 10.1145/76894.76895
[2]  
Aggarwal CC, 2004, LECT NOTES COMPUT SC, V2992, P183
[3]  
Agrawal D., 2001, Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, P247, DOI DOI 10.1145/375551.375602
[4]  
AGRAWAL R, 2000, P ACM SIGMOD INT C M, P349
[5]  
[Anonymous], 2002, Proceedings of The Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, DOI DOI 10.1145/775047.775080
[6]  
Asuncion A., 2007, UCI MACHINE LEARNING
[7]  
Chen KK, 2005, Fifth IEEE International Conference on Data Mining, Proceedings, P589
[8]  
Dobra A., 2001, Stat. J. U.N. Econ. Comm. Eur., V18, P363
[9]  
Evfimievski, 2002, SIGKDD EXPLORATIONS, V4, P43, DOI DOI 10.1145/772862.772869
[10]  
Evfimievski A, 2003, P 22 ACM SIGMOD SIGA, P211, DOI DOI 10.1145/773153.773174