Lucas Polynomials and Power Sums

被引:0
|
作者
Tamm, Ulrich [1 ]
机构
[1] Marmara Univ Istanbul, Dept Business Informat, Istanbul, Turkey
来源
2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA) | 2013年
关键词
orthogonal polynomials; Chebyshev polynomials; Lucas polynomials; Girard - Waring formula; zeta function;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The three - term recurrence x(n) + y(n) = (x + y) . (x(n-1) + y(n-1)) - xy . (x(n-2) + y(n-2)) allows to express x(n) + y(n) as a polynomial in the two variables x + y and xy. This polynomial is the bivariate Lucas polynomial. This identity is not as well known as it should be. It can be explained algebraically via the Girard - Waring formula, combinatorially via Lucas numbers and polynomials, and analytically as a special orthogonal polynomial. We shall briefly describe all these aspects and present an application from number theory.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] On h(x)-Lucas quaternion polynomials
    Ari, Kamil
    ARS COMBINATORIA, 2015, 121 : 291 - 303
  • [22] On the Lucas polynomials and some of their new identities
    Zhang Jin
    Advances in Difference Equations, 2018
  • [23] The infinite sums of reciprocals and the partial sums of Chebyshev polynomials
    Yang, Fan
    Li, Yang
    AIMS MATHEMATICS, 2022, 7 (01): : 334 - 348
  • [24] On the nested sums and orthogonal polynomials
    Abderraman Marrero, J.
    Rachidi, M.
    Tomeo, V.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (08) : 995 - 1007
  • [25] Fejer Sums and Chebyshev Polynomials
    Bustamante, Jorge
    Jesus Merino-Garcia, Juan
    Maria Quesada, Jose
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [26] On Generalized Jacobsthal and Jacobsthal-Lucas polynomials
    Catarino, P.
    Morgado, M. L.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (03): : 61 - 78
  • [27] Fibonacci and Lucas Polynomials in n-gon
    Kuloglu, Bahar
    Ozkan, Engin
    Marin, Marin
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (02): : 127 - 140
  • [28] Fejér Sums and Chebyshev Polynomials
    Jorge Bustamante
    Juan Jesús Merino-García
    José María Quesada
    Results in Mathematics, 2019, 74
  • [29] On the Chebyshev Polynomials and Some of Their Reciprocal Sums
    Zhang, Wenpeng
    Han, Di
    SYMMETRY-BASEL, 2020, 12 (05):
  • [30] STIELTJES SUMS FOR ZEROS OF ORTHOGONAL POLYNOMIALS
    RONVEAUX, A
    MULDOON, ME
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (1-2) : 261 - 269