A study of carbon deposition on solid oxide fuel cell anodes using electrochemical impedance spectroscopy in combination with a high temperature crystal microbalance

被引:33
作者
Millichamp, Jason [1 ]
Mason, Thomas J. [1 ]
Brandon, Nigel P. [2 ]
Brown, Richard J. C. [3 ]
Maher, Robert C. [4 ]
Manos, George [1 ]
Neville, Tobias P. [1 ]
Brett, Daniel J. L. [1 ]
机构
[1] UCL, Dept Chem Engn, Ctr Technol CO2, London WC1E 7JE, England
[2] Univ London Imperial Coll Sci Technol & Med, Energy Futures Lab, London SW7 2AZ, England
[3] Natl Phys Lab, Analyt Sci Div, Teddington TW11 0LW, Middx, England
[4] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
基金
英国工程与自然科学研究理事会;
关键词
Sensor; Coke; Nickel; Gallium phosphate; Raman spectroscopy; Microbalance; NI-CGO ANODES; RAMAN-SPECTROSCOPY; FILAMENTOUS CARBON; NICKEL; METHANE; KINETICS; HYDROCARBONS; MONOXIDE;
D O I
10.1016/j.jpowsour.2013.02.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel bulk acoustic wave (BAW) microgravimetric sensor based on gallium orthophosphate is demonstrated that it is capable of operation at high temperature (up to 900 degrees C). The sensor is applied to the detection of carbon deposition onto electrodeposited nickel from dry methane at 600 degrees C and used as an analogue for studying the coking of solid oxide fuel cell (SOFC) anodes. The degradation of electrochemical performance due to deposition of carbon onto symmetrical SOFCs with nickel/gadolinium doped ceria electrodes is measured using electrochemical impedance spectroscopy (EIS). Direct correlation is observed between the frequency shift of the sensor and the change in resistance to charge transfer of the SOFC anode. An induction period (similar to 2 h) following exposure to methane is observed where no significant carbon deposition occurs. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 45 条
[1]  
Alstrup I, 1998, MATER CORROS, V49, P367, DOI 10.1002/(SICI)1521-4176(199805)49:5<367::AID-MACO367>3.0.CO
[2]  
2-M
[3]   Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst [J].
Avetisov, A. K. ;
Rostrup-Nielsen, J. R. ;
Kuchaev, V. L. ;
Hansen, J. -H. Bak ;
Zyskin, A. G. ;
Shapatina, E. N. .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2010, 315 (02) :155-162
[4]   The impact of wood-derived gasification gases on Ni-CGO anodes in intermediate temperature solid oxide fuel cells [J].
Baron, S ;
Brandon, N ;
Atkinson, A ;
Steele, B ;
Rudkin, R .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :58-66
[5]   Steam reforming and graphite formation on Ni catalysts [J].
Bengaard, HS ;
Norskov, JK ;
Sehested, J ;
Clausen, BS ;
Nielsen, LP ;
Molenbroek, AM ;
Rostrup-Nielsen, JR .
JOURNAL OF CATALYSIS, 2002, 209 (02) :365-384
[6]  
BOROWIECKI T, 1994, STUD SURF SCI CATAL, V88, P537
[7]   Engineering porous materials for fuel cell applications [J].
Brandon, NP ;
Brett, DJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838) :147-159
[8]   Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming [J].
Christensen, K. O. ;
Chen, D. ;
Lodeng, R. ;
Holmen, A. .
APPLIED CATALYSIS A-GENERAL, 2006, 314 (01) :9-22
[9]   Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells [J].
Clarke, SH ;
Dicks, AL ;
Pointon, K ;
Smith, TA ;
Swann, A .
CATALYSIS TODAY, 1997, 38 (04) :411-423
[10]   Raman spectroscopy and imaging of ultralong carbon nanotubes [J].
Doorn, SK ;
Zheng, LX ;
O'Connell, MJ ;
Zhu, YT ;
Huang, SM ;
Liu, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (09) :3751-3758