Global attractivity of a discrete SIRS epidemic model with standard incidence rate

被引:10
作者
Wang, Lei [1 ]
Teng, Zhidong [1 ]
Jiang, Haijun [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
discrete SIRS epidemic model; basic reproduction number; global attractivity; iteration technique; endemic equilibrium; TIME SI; TRANSMISSION; PERMANENCE; DYNAMICS;
D O I
10.1002/mma.2734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a discrete Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic model with standard incidence rate is studied. By means of the iteration technique and the comparison principle of difference equations, the sufficient conditions are obtained for the global attractivity of the endemic equilibrium when the basic reproduction number R0 is greater than unity. Two examples are given to illustrate the main theoretical results. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:601 / 619
页数:19
相关论文
共 28 条
[11]   Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate [J].
Gakkhar, Sunita ;
Negi, Kuldeep .
CHAOS SOLITONS & FRACTALS, 2008, 35 (03) :626-638
[12]   Antiviral effects on influenza viral transmission and pathogenicity: Observations from household-based trials [J].
Halloran, M. Elizabeth ;
Hayden, Frederick G. ;
Yang, Yang ;
Longini, Ira M., Jr. ;
Monto, Arnold S. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2007, 165 (02) :212-221
[13]   Stability analysis in a class of discrete SIRS epidemic models [J].
Hu, Zengyun ;
Teng, Zhidong ;
Jiang, Haijun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) :2017-2033
[14]  
Kocic V.L., 1993, Global behavior of nonlinear difference equations of higher order with applications
[15]  
Li JQ, 2008, APPL MATH MECH-ENGL, V29, P113, DOI 10.1007/s10483-008-0013-y
[16]   Global analysis of discrete-time SI and SIS epidemic models [J].
Li, Jianquan ;
Ma, Zhien ;
Brauer, Fred .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2007, 4 (04) :699-710
[17]   A discrete epidemic model with stage structure [J].
Li, XY ;
Wang, WD .
CHAOS SOLITONS & FRACTALS, 2005, 26 (03) :947-958
[18]  
MENALORCA J, 1992, J MATH BIOL, V30, P693
[19]   Dynamical evolution of discrete epidemic models [J].
Méndez, V ;
Fort, J .
PHYSICA A, 2000, 284 (1-4) :309-317
[20]   Extending the SIR epidemic model [J].
Satsuma, J ;
Willox, R ;
Ramani, A ;
Grammaticos, B ;
Carstea, AS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 336 (3-4) :369-375