Global attractivity of a discrete SIRS epidemic model with standard incidence rate

被引:10
作者
Wang, Lei [1 ]
Teng, Zhidong [1 ]
Jiang, Haijun [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
discrete SIRS epidemic model; basic reproduction number; global attractivity; iteration technique; endemic equilibrium; TIME SI; TRANSMISSION; PERMANENCE; DYNAMICS;
D O I
10.1002/mma.2734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a discrete Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic model with standard incidence rate is studied. By means of the iteration technique and the comparison principle of difference equations, the sufficient conditions are obtained for the global attractivity of the endemic equilibrium when the basic reproduction number R0 is greater than unity. Two examples are given to illustrate the main theoretical results. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:601 / 619
页数:19
相关论文
共 28 条
[1]   Spatial patterns in a discrete-time SIS patch model [J].
Allen, L. J. S. ;
Lou, Y. ;
Nevai, A. L. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (03) :339-375
[2]   The basic reproduction number in some discrete-time epidemic models [J].
Allen, Linda J. S. ;
van den Driessche, P. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (10-11) :1127-1147
[3]   SOME DISCRETE-TIME SI, SIR, AND SIS EPIDEMIC MODELS [J].
ALLEN, LJS .
MATHEMATICAL BIOSCIENCES, 1994, 124 (01) :83-105
[4]  
ANDERSON R M, 1991
[5]  
Andersson H., 2000, Lecture Notes in Statistics
[6]   Discrete-time S-I-S models with complex dynamics [J].
Castillo-Chavez, C ;
Yakubu, AA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) :4753-4762
[7]   A numerical investigation of discrete oscillating epidemic models [J].
D'Innocenzo, A ;
Paladini, F ;
Renna, L .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :497-512
[8]  
Diekmann O, 2000, SERIES MATH COMPUTAT
[9]   Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models [J].
Franke, John E. ;
Yakubu, Abdul-Aziz .
JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (06) :755-790
[10]   Factors that make an infectious disease outbreak controllable [J].
Fraser, C ;
Riley, S ;
Anderson, RM ;
Ferguson, NM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (16) :6146-6151