Algorithm for Increasing the Speed of Evolutionary Optimization and its Accuracy in Multi-objective Problems

被引:61
|
作者
Shokri, Ashkan [1 ]
Bozorg-Haddad, Omid [2 ]
Marino, Miguel A. [3 ,4 ,5 ]
机构
[1] Univ Tehran, Coll Agr & Nat Resources, Dept Irrigat & Reclamat, Tehran, Iran
[2] Univ Tehran, Coll Agr & Nat Resources, Fac Agr Engn & Technol, Dept Irrigat & Reclamat, Tehran, Iran
[3] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
[5] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA
关键词
NSGAII-ANN algorithm; Evolutionary optimization; Time-consuming simulation; Expensive simulation; OPERATION OPTIMIZATION; RESERVOIR OPERATION; WATER; DESIGN; DISCRETE;
D O I
10.1007/s11269-013-0285-4
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Optimization algorithms are important tools for the solution of combinatorial management problems. Nowadays, many of those problems are addressed by using evolutionary algorithms (EAs) that move toward a near-optimal solution by repetitive simulations. Sometimes, such extensive simulations are not possible or are costly and time-consuming. Thus, in this study a method based on artificial neural networks (ANN) is proposed to reduce the number of simulations required in EAs. Specifically, an ANN simulator is used to reduce the number of simulations by the main simulator. The ANN is trained and updated only for required areas in the decision space. Performance of the proposed method is examined by integrating it with the non-dominated sorting genetic algorithm (NSGAII) in multi-objective problems. In terms of density and optimality of the Pareto front, the hybrid NSGAII-ANN is able to extract the Pareto front with much less simulation time compared to the sole use of the NSGAII algorithm. The proposed NSGAII-ANN methodology was examined using three standard test problems (FON, KUR, and ZDT1) and one real-world problem. The latter addresses the operation of a reservoir with two objectives (meeting demand and flood control). Thus, based on this study, use of the NSGAII-ANN integrative algorithm in problems with time-consuming simulators reduces the required time for optimization up to 50 times. Results of the real-world problem, despite lower computational-time requirements, show a performance similar to that achieved in the aforementioned test problems.
引用
收藏
页码:2231 / 2249
页数:19
相关论文
共 50 条
  • [31] An Evolutionary Membrane Algorithm Based on Competition Mechanism for Multi-objective Optimization Problems
    Geng, Zhiqiang
    Cui, Yunfei
    Han, Yongming
    PROCEEDINGS OF 2019 CHINESE INTELLIGENT AUTOMATION CONFERENCE, 2020, 586 : 116 - 123
  • [32] Transfer learning based evolutionary algorithm framework for multi-objective optimization problems
    Jiaheng Huang
    Jiechang Wen
    Lei Chen
    Hai-Lin Liu
    Applied Intelligence, 2023, 53 : 18085 - 18104
  • [33] Grasshopper optimization algorithm for multi-objective optimization problems
    Mirjalili, Seyedeh Zahra
    Mirjalili, Seyedali
    Saremi, Shahrzad
    Faris, Hossam
    Aljarah, Ibrahim
    APPLIED INTELLIGENCE, 2018, 48 (04) : 805 - 820
  • [34] Grasshopper optimization algorithm for multi-objective optimization problems
    Seyedeh Zahra Mirjalili
    Seyedali Mirjalili
    Shahrzad Saremi
    Hossam Faris
    Ibrahim Aljarah
    Applied Intelligence, 2018, 48 : 805 - 820
  • [35] A new multi-objective evolutionary algorithm for solving high complex multi-objective problems
    Li, Kangshun
    Yue, Xuezhi
    Kang, Lishan
    Chen, Zhangxin
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 745 - +
  • [36] A fast interpolation-based multi-objective evolutionary algorithm for large-scale multi-objective optimization problems
    Liu, Zhe
    Han, Fei
    Ling, Qinghua
    Han, Henry
    Jiang, Jing
    SOFT COMPUTING, 2024, 28 (02) : 1055 - 1072
  • [37] Constrained test problems for multi-objective evolutionary optimization
    Deb, K
    Pratap, A
    Meyarivan, T
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 284 - 298
  • [38] Multi-objective Jaya Algorithm for Solving Constrained Multi-objective Optimization Problems
    Naidu, Y. Ramu
    Ojha, A. K.
    Devi, V. Susheela
    ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 89 - 98
  • [39] A Multi-Objective Evolutionary Algorithm Based on Bilayered Decomposition for Constrained Multi-Objective Optimization
    Yasuda, Yusuke
    Kumagai, Wataru
    Tamura, Kenichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (02) : 244 - 262
  • [40] Multi-objective optimization of cellular fenestration by an evolutionary algorithm
    Wright, Jonathan A.
    Brownlee, Alexander E. I.
    Mourshed, Monjur M.
    Wang, Mengchao
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2014, 7 (01) : 33 - 51