On Quasi-Hermitian Varieties

被引:15
|
作者
Aguglia, A. [1 ]
Cossidente, A. [2 ]
Korchmaros, G. [2 ]
机构
[1] Politecn Bari, Dipartimento Matemat, I-70126 Bari, Italy
[2] Univ Basilicata, Dipartimento Matemat & Informat, I-85100 Potenza, Italy
关键词
Hermitian variety; quadric; two-character sets;
D O I
10.1002/jcd.21317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasi-Hermitian varieties V in PG (r,q2) are combinatorial generalizations of the (nondegenerate) Hermitian variety H(r,q2) so that V and H(r,q2) have the same size and the same intersection numbers with hyperplanes. In this paper, we construct a new family of quasi-Hermitian varieties. The isomorphism problem for the associated strongly regular graphs is discussed for r=2.
引用
收藏
页码:433 / 447
页数:15
相关论文
共 50 条
  • [1] On the equivalence of certain quasi-Hermitian varieties
    Aguglia, Angela
    Giuzzi, Luca
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (02) : 124 - 138
  • [2] A note on quasi-Hermitian varieties and singular quasi-quadrics
    De Winter, S.
    Schillewaert, J.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (05) : 911 - 918
  • [3] On quasi-Hermitian varieties in PG(3, q2)
    Napolitano, Vito
    DISCRETE MATHEMATICS, 2016, 339 (02) : 511 - 514
  • [4] On Quasi-Hermitian Varieties in Even Characteristic and Related Orthogonal Arrays
    Aguglia, Angela
    Giuzzi, Luca
    Montinaro, Alessandro
    Siconolfi, Viola
    JOURNAL OF COMBINATORIAL DESIGNS, 2025, 33 (03) : 109 - 122
  • [5] QUASI-HERMITIAN VARIETIES IN PG(r,q2), q EVEN
    Aguglia, Angela
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2013, 8 (01) : 31 - 37
  • [6] ON THE THEORY OF QUASI-HERMITIAN BIEXTENSIONS OF CLOSED HERMITIAN OPERATORS
    GUBREEV, GM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (08): : 13 - 15
  • [7] Uniformly quasi-Hermitian groups are supramenable
    Azam, Mahmud
    Samei, Ebrahim
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (03): : 665 - 673
  • [8] Some remarks on quasi-Hermitian operators
    Antoine, Jean-Pierre
    Trapani, Camillo
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (01)
  • [9] METRIC PSEUDOCONNECTIONS ON A QUASI-HERMITIAN MANIFOLD
    FALCITELLI, M
    PASTORE, AM
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (09): : 823 - 832
  • [10] PATH INTEGRALS FOR QUASI-HERMITIAN HAMILTONIANS
    Rivers, R. J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (05): : 919 - 932