Numerical methods for a class of nonlinear integro-differential equations

被引:5
|
作者
Glowinski, R. [1 ]
Shiau, L. [2 ]
Sheppard, M. [2 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Univ Houston, Dept Math, Houston, TX 77058 USA
基金
美国国家科学基金会;
关键词
Integro-differential equations; Finite differences; Symmetrized operator-splitting schemes; ELEMENT METHOD; SIMULATION;
D O I
10.1007/s10092-012-0056-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous article (Glowinski, J. Math. Anal. Appl. 41, 67-96, 1973) the first author discussed several methods for the numerical solution of nonlinear equations of the integro-differential type with periodic boundary conditions. In this article we discuss an alternative methodology largely based on the Strang's symmetrized operator-splitting scheme. Several numerical experiments suggest that the new method is robust and accurate. It is also easier to implement than the various methods discussed by Glowinski in J. Math. Anal. Appl. 41, 67-96 (1973).
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [31] Numerical methods based on spline quasi-interpolation operators for integro-differential equations
    Allouch, Chafik
    Barrera, Domingo
    Saou, Abdelmonaim
    Sbibih, Driss
    Tahrichi, Mohamed
    JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (04): : 387 - 401
  • [32] A quasilinearization method for a class of integro-differential equations with mixed nonlinearities
    Ahmad, Bashir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 997 - 1004
  • [33] Symmetries of integro-differential equations
    Zawistowski, ZJ
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 269 - 276
  • [35] On the integro-differential equations with reflection
    Dads, Elhadi Ait
    Khelifi, Safoua
    Miraoui, Mohsen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 10262 - 10275
  • [36] CONVEXITY PRESERVING FOR FULLY NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Bian, Baojun
    Guan, Pengfei
    METHODS AND APPLICATIONS OF ANALYSIS, 2008, 15 (01) : 39 - 52
  • [37] Controllability of impulsive nonlinear ψ-Hilfer fractional integro-differential equations
    Ahmed, A. M. Sayed
    AL-Nahhas, Mahmoud A.
    Omar, Othman A. M.
    Chalishajar, Dimplekumar N.
    Ahmed, Hamdy M.
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 16
  • [38] EXPANSION APPROACH FOR SOLVING NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    Rashidinia, J.
    Tahmasebi, A.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 14 - 27
  • [39] ASYMPTOTIC STABILITY OF NONLINEAR NEUTRAL DELAY INTEGRO-DIFFERENTIAL EQUATIONS
    Nowak, Grzegorz
    Saker, Samir H.
    Sikorska-Nowak, Aneta
    MATHEMATICA SLOVACA, 2023, 73 (01) : 103 - 118
  • [40] Newton-Tau Numerical Solution of One-Dimensional Nonlinear Integro-Differential Equations
    Ivaz, K.
    Shahmorad, S.
    Mostahkam, B. Sadigh
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (04) : 733 - 740