A BAYESIAN APPROACH FOR THE JOINT ESTIMATION OF THE MULTIFRACTALITY PARAMETER AND INTEGRAL SCALE BASED ON THE WHITTLE APPROXIMATION

被引:0
|
作者
Combrexelle, S. [1 ]
Wendt, H. [1 ]
Abry, P. [2 ]
Dobigeon, N. [1 ]
McLaughlin, S. [3 ]
Tourneret, J. -Y [1 ]
机构
[1] Univ Toulouse, CNRS, IRIT ENSEEIHT, F-31062 Toulouse, France
[2] Ecole Normale Super Lyon, Phys Dept, CNRS, F-69364 Lyon, France
[3] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh, Midlothian, Scotland
来源
2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP) | 2015年
基金
英国工程与自然科学研究理事会;
关键词
Multifractal Analysis; Integral Scale; Wavelet Leaders; Bayesian Estimation; Whittle Likelihood; TURBULENT FLOWS; ASSET RETURNS; INTERMITTENCY; CASCADES;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Multifractal analysis is a powerful tool used in signal processing. Multifractal models are essentially characterized by two parameters, the multifractality parameter c(2) and the integral scale A (the time scale beyond which multifractal properties vanish). Yet, most applications concentrate on estimating c(2) while the estimation of A is in general overlooked, despite the fact that A potentially conveys important information. Joint estimation of c(2) and A is challenging due to the statistical nature of multifractal processes (i.e. the strong dependence and non-Gaussian nature), and has barely been considered. The present contribution addresses these limitations and proposes a Bayesian procedure for the joint estimation of (c(2), A). Its originality resides, first, in the construction of a generic multivariate model for the statistics of wavelet leaders for multifractal multiplicative cascade processes, and second, in the use of a suitable Whittle approximation for the likelihood associated with the model. The resulting model enables Bayesian estimators for (c(2), A) to also be computed for large sample size. Performance is assessed numerically for synthetic multifractal processes and illustrated for wind-tunnel turbulence data. The proposed procedure significantly improves estimation of c(2) and yields, for the first time, reliable estimates for A.
引用
收藏
页码:3886 / 3890
页数:5
相关论文
共 50 条
  • [41] Bayesian approach to the choice of smoothing parameter in kernel density estimation
    Gangopadhyay, AK
    Cheung, KN
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (06) : 655 - 664
  • [42] A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems
    Petra, Noemi
    Petra, Cosmin G.
    Zhang, Zheng
    Constantinescu, Emil M.
    Anitescu, Mihai
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) : 2735 - 2743
  • [43] Bayesian approach for parameter estimation of the diagonal of the Modified Riesz Distribution
    Ben Arab, Taher
    Hadrich, Atizez
    Masmoudi, Afif
    Zribi, Mourad
    NEUROCOMPUTING, 2015, 150 : 357 - 366
  • [44] A Bayesian approach for parameter estimation in multi-stage models
    Pham, Hoa
    Nur, Darfiana
    Pham, Huong T. T.
    Branford, Alan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (10) : 2459 - 2482
  • [45] A Penalized Likelihood Approach to Parameter Estimation with Integral Reliability Constraints
    Smith, Barry
    Wang, Steven
    Wong, Augustine
    Zhou, Xiaofeng
    ENTROPY, 2015, 17 (06) : 4040 - 4063
  • [46] Bayesian approach to estimation of ordered uniform scale parameters
    Lillo, RE
    Martín, M
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 87 (01) : 105 - 118
  • [47] Decentralized parameter estimation by consensus based stochastic approximation
    Stankovic, Srdjan S.
    Stankovic, Milos S.
    Stipanovic, Dusan M.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 4930 - +
  • [48] Decentralized Parameter Estimation by Consensus Based Stochastic Approximation
    Stankovic, Srdjan S.
    Stankovic, Milos S.
    Stipanovic, Dusan M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (03) : 531 - 543
  • [49] Study on joint Bayesian model selection and parameter estimation method of GTD model
    Shi ZhiGuang
    Zhou JianXiong
    Zhao HongZhong
    Fu Qiang
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2007, 50 (02): : 261 - 272
  • [50] Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach
    Iizumi, Toshichika
    Yokozawa, Masayuki
    Nishimori, Motoki
    AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (02) : 333 - 348