A BAYESIAN APPROACH FOR THE JOINT ESTIMATION OF THE MULTIFRACTALITY PARAMETER AND INTEGRAL SCALE BASED ON THE WHITTLE APPROXIMATION

被引:0
|
作者
Combrexelle, S. [1 ]
Wendt, H. [1 ]
Abry, P. [2 ]
Dobigeon, N. [1 ]
McLaughlin, S. [3 ]
Tourneret, J. -Y [1 ]
机构
[1] Univ Toulouse, CNRS, IRIT ENSEEIHT, F-31062 Toulouse, France
[2] Ecole Normale Super Lyon, Phys Dept, CNRS, F-69364 Lyon, France
[3] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh, Midlothian, Scotland
来源
2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP) | 2015年
基金
英国工程与自然科学研究理事会;
关键词
Multifractal Analysis; Integral Scale; Wavelet Leaders; Bayesian Estimation; Whittle Likelihood; TURBULENT FLOWS; ASSET RETURNS; INTERMITTENCY; CASCADES;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Multifractal analysis is a powerful tool used in signal processing. Multifractal models are essentially characterized by two parameters, the multifractality parameter c(2) and the integral scale A (the time scale beyond which multifractal properties vanish). Yet, most applications concentrate on estimating c(2) while the estimation of A is in general overlooked, despite the fact that A potentially conveys important information. Joint estimation of c(2) and A is challenging due to the statistical nature of multifractal processes (i.e. the strong dependence and non-Gaussian nature), and has barely been considered. The present contribution addresses these limitations and proposes a Bayesian procedure for the joint estimation of (c(2), A). Its originality resides, first, in the construction of a generic multivariate model for the statistics of wavelet leaders for multifractal multiplicative cascade processes, and second, in the use of a suitable Whittle approximation for the likelihood associated with the model. The resulting model enables Bayesian estimators for (c(2), A) to also be computed for large sample size. Performance is assessed numerically for synthetic multifractal processes and illustrated for wind-tunnel turbulence data. The proposed procedure significantly improves estimation of c(2) and yields, for the first time, reliable estimates for A.
引用
收藏
页码:3886 / 3890
页数:5
相关论文
共 50 条
  • [21] Bayesian approach to parameter estimation of the generalized pareto distribution
    Bermudez, PD
    Turkman, MAA
    TEST, 2003, 12 (01) : 259 - 277
  • [22] Bayesian Approach for Parameter Estimation in Vehicle Lateral Dynamics
    Lionti, Fabien
    Gutowski, Nicolas
    Aubin, Sebastien
    Martinet, Philippe
    FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2024, 2024, 14670 : 249 - 259
  • [23] Bayesian approach to parameter estimation of the generalized pareto distribution
    P. de Zea Bermudez
    M. A. Amaral Turkman
    Test, 2003, 12 (1) : 259 - 277
  • [25] A Bayesian approach to parameter estimation in HIV dynamical models
    Putter, H
    Heisterkamp, SH
    Lange, JMA
    de Wolf, F
    STATISTICS IN MEDICINE, 2002, 21 (15) : 2199 - 2214
  • [26] A hierarchical Bayesian approach for parameter estimation in HIV models
    Banks, HT
    Grove, S
    Hu, S
    Ma, YY
    INVERSE PROBLEMS, 2005, 21 (06) : 1803 - 1822
  • [27] On the Bayesian estimation for the uniform scale parameter via a functional equation
    Lillo, Rosa E.
    Martin, Miguel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (12) : 2197 - 2210
  • [28] A Bayesian Approach to Parameter Estimation for Kernel Density Estimation via Transformations
    Liu, Qing
    Pitt, David
    Zhang, Xibin
    Wu, Xueyuan
    ANNALS OF ACTUARIAL SCIENCE, 2011, 5 (02) : 181 - 193
  • [29] The Prolongation for Bayesian estimation of Scale - parameter of Double exponential distribution
    Ying Yirong
    Zhao Shiyao
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON CIVIL, TRANSPORTATION AND ENVIRONMENT, 2016, 78 : 309 - 313
  • [30] BAYESIAN VARIATIONAL APPROXIMATION FOR THE JOINT DETECTION ESTIMATION OF BRAIN ACTIVITY IN fMRI
    Chaari, Lotfi
    Forbes, Florence
    Ciuciu, Philippe
    Vincent, Thomas
    Dojat, Michel
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 469 - 472