Tests based on Monte Carlo simulations conditioned on maximum likelihood estimates of nuisance parameters

被引:2
|
作者
Lillegård, M [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Behrens-Fisher problem; conditional simulation; maximum likelihood estimate; nuisance parameter; sufficient statistic;
D O I
10.1080/00949650108812130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method to eliminate nuisance parameters in statistical inference is to condition on sufficient statistics for those parameters. In many situations it is not possible to find appropriate sufficient statistics on which to condition, the Behrens-Fisher problem being a well known example. In this paper a general procedure, based on stochastic simulations, is given for how to deal with nuisance parameters in such cases. The technique is based on adjusting the parameters in the simulations so that the observed maximum likelihood estimates of the nuisance parameters is obtained. The method is shown to have good properties when applied to the Behrens-Fisher problem, and is also shown to work well when comparing means in more than two groups with possibly unequal variances. The simulation procedure has the advantage that it is rather general, and can easily be applied to other problems.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] MAXIMUM LIKELIHOOD AND NUISANCE PARAMETERS
    BARNARD, GA
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1973, 35 (JUN): : 133 - 138
  • [2] Corrections for bias in maximum likelihood parameter estimates due to nuisance parameters
    Hu, MX
    Lachin, JM
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (03) : 619 - 639
  • [3] Monte Carlo maximum likelihood in model-based geostatistics
    Christensen, OF
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) : 702 - 718
  • [4] Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods
    Oualid Saci
    Megdouda Ourbih-Tari
    Leila Baiche
    Sankhya A, 2023, 85 : 540 - 571
  • [5] Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods
    Saci, Oualid
    Ourbih-Tari, Megdouda
    Baiche, Leila
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 540 - 571
  • [6] Efficient Monte Carlo algorithm for restricted maximum likelihood estimation of genetic parameters
    Matilainen, Kaarina
    Mantysaari, Esa A.
    Stranden, Ismo
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2019, 136 (04) : 252 - 261
  • [7] ASYMPTOTICS OF MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATORS
    Miasojedow, Blazej
    Niemiro, Wojciech
    Palczewski, Jan
    Rejchel, Wojciech
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (02): : 295 - 310
  • [8] MAXIMUM LIKELIHOOD ESTIMATES OF MONOTONE PARAMETERS
    BRUNK, HD
    ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04): : 607 - 616
  • [9] MAXIMUM LIKELIHOOD ESTIMATES OF MONOTONE PARAMETERS
    BRUNK, HD
    ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (01): : 152 - 152
  • [10] Maximum Likelihood Carrier Phase Estimation Based on Monte Carlo Integration
    Rios-Muller, Rafael
    Bitachon, Bertold Ian
    43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), 2017,