Electromagnetic resonance analysis of asymmetric carbon nanotube dimers for sensing applications

被引:4
作者
Dey, Sumitra [1 ]
Garboczi, Edward J. [2 ]
Hassan, Ahmed M. [1 ]
机构
[1] Univ Missouri, Dept Comp Sci & Elect Engn, Kansas City, MO 64110 USA
[2] NIST, Appl Chem & Mat Div, Mat Measurement Lab, Boulder, CO 80305 USA
关键词
Anti-bonding mode; bonding mode; carbon nanotubes (CNTs); dimers; method of moment for arbitrary thin wire (MOM-ATW); PLASMON RESONANCES; CONDUCTIVITY; ABSORPTION; SCATTERING; DIPOLES; FILMS;
D O I
10.1088/1361-6528/aba058
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we study the electromagnetic scattering characteristics of asymmetric carbon nanotube (CNT) dimers with rigorous computational experiments. We show that the configurational asymmetry in the CNT dimer assembly creates a unique field distribution in the vicinity of the dimer, which in turn generates two distinct resonances representing the bonding and anti-bonding modes. The sensitivity of these two modes towards CNT lengths, orientations, and shapes, is studied. We also show the ability of asymmetric CNT dimer for the contactless detection of nanoparticles (NP). The presence of a NP in the vicinity of the CNT dimer perturbs the dimer's field distribution and causes unequal shifts in the bonding and anti-bonding resonances depending on the NP location, material, size and shape. By studying the differences in these resonance shifts, we show that the relative location and orientation of the NP can be reconstructed. The computational experiments performed in this work have the potential to guide the use of asymmetric CNT dimers for novel sensing applications.
引用
收藏
页数:13
相关论文
共 51 条
  • [1] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [2] Carbon nanotubes: nanomechanics, manipulation, and electronic devices
    Avouris, P
    Hertel, T
    Martel, R
    Schmidt, T
    Shea, HR
    Walkup, RE
    [J]. APPLIED SURFACE SCIENCE, 1999, 141 (3-4) : 201 - 209
  • [3] Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes
    Blancon, Jean-Christophe
    Paillet, Matthieu
    Tran, Huy Nam
    Xuan Tinh Than
    Guebrou, Samuel Aberra
    Ayari, Anthony
    San Miguel, Alfonso
    Ngoc-Minh Phan
    Zahab, Ahmed-Azmi
    Sauvajol, Jean-Louis
    Del Fatti, Natalia
    Vallee, Fabrice
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [4] Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs
    Brown, Lisa V.
    Sobhani, Heidar
    Lassiter, J. Britt
    Nordlander, Peter
    Halas, Naomi J.
    [J]. ACS NANO, 2010, 4 (02) : 819 - 832
  • [5] Development of Infrared Detectors Using Single Carbon-Nanotube-Based Field-Effect Transistors
    Chen, Hongzhi
    Xi, Ning
    Lai, King W. C.
    Fung, Carmen K. M.
    Yang, Ruiguo
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010, 9 (05) : 582 - 589
  • [6] Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes
    Chiu, Kuan-Chang
    Falk, Abram L.
    Ho, Po-Hsun
    Farmer, Damon B.
    Tulevski, George
    Lee, Yi-Hsien
    Avouris, Phaedon
    Han, Shu-Jen
    [J]. NANO LETTERS, 2017, 17 (09) : 5641 - 5645
  • [7] Optical Imaging and Absolute Absorption Cross Section Measurement of Individual Nano-objects on Opaque Substrates: Single-Wall Carbon Nanotubes on Silicon
    Christofilos, D.
    Blancon, J. -C.
    Arvanitidis, J.
    San Miguel, A.
    Ayari, A.
    Del Fatti, N.
    Vallee, F.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09): : 1176 - 1181
  • [8] Effect of Symmetry Breaking on the Mode Structure of Trimeric Plasmonic Molecules
    Chuntonov, Lev
    Haran, Gilad
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40) : 19488 - 19495
  • [9] Trimeric Plasmonic Molecules: The Role of Symmetry
    Chuntonov, Lev
    Haran, Gilad
    [J]. NANO LETTERS, 2011, 11 (06) : 2440 - 2445
  • [10] AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects
    D'Orlando, Angelina
    Bayle, Maxime
    Louarn, Guy
    Humbert, Bernard
    [J]. MATERIALS, 2019, 12 (09)