Design of novel disturbing peptides against ACE2 SARS-CoV-2 spike-binding region by computational approaches

被引:6
|
作者
Zareei, Sara [1 ]
Pourmand, Saeed [2 ]
Amanlou, Massoud [3 ,4 ]
机构
[1] Kharazmi Univ, Fac Biol Sci, Dept Cell & Mol Biol, Tehran, Iran
[2] Univ Tabriz, Fac Chem & Petr Engn, Dept Chem Engn, Tabriz, Iran
[3] Univ Tehran Med Sci, Fac Pharm, Dept Med Chem, Tehran, Iran
[4] Univ Tehran Med Sci, Expt Med Res Ctr, Tehran, Iran
关键词
SARS-CoV-2; COVID-19; angiotensin converting enyzme 2; peptide design; molecular dynamics simulation; drug discovery; ANGIOTENSIN-CONVERTING ENZYME; RECEPTOR-BINDING; PROTEIN; CORONAVIRUS; ENTRY; EXPRESSION; MUTATIONS; GROMACS; SITE;
D O I
10.3389/fphar.2022.996005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The SARS-CoV-2, the virus which is responsible for COVID-19 disease, employs its spike protein to recognize its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequently enters the host cell. In this process, the receptor-binding domain (RBD) of the spike has an interface with the alpha 1-helix of the peptidase domain (PD) of ACE2. This study focuses on the disruption of the protein-protein interaction (PPI) of RBD-ACE2. Among the residues in the template (which was extracted from the ACE2), those with unfavorable energies were selected for substitution by mutagenesis. As a result, a library of 140 peptide candidates was constructed and the binding affinity of each candidate was evaluated by molecular docking and molecular dynamics simulations against the alpha 1-helix of ACE2. Finally, the most potent peptides P23 (GFNNYFPHQSYGFMPTNGVGY), P28 (GFNQYFPHQSYGFPPTNGVGY), and P31 (GFNRYFPHQSYGFCPTNGVGY) were selected and their dynamic behaviors were studied. The results showed peptide inhibitors increased the radius, surface accessible area, and overall mobility of residues of the protein. However, no significant alteration was seen in the key residues in the active site. Meanwhile, they can be proposed as promising agents against COVID-19 by suppressing the viral attachment and curbing the infection at its early stage. The designed peptides showed potency against beta, gamma, delta, and omicron variants of SARS-CoV-2.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides
    Llewellyn, George N.
    Chen, Hsu-Yu
    Rogers, Geoffrey L.
    Huang, Xiaoli
    Sell, Philip J.
    Henley, Jill E.
    Cannon, Paula M.
    JOURNAL OF VIROLOGY, 2023, 97 (08)
  • [2] Binding of SARS-COV-2 (COVID-19) and SARS-COV to human ACE2: Identifying binding sites and consequences on ACE2 stiffness
    Faisal, H. M. Nasrullah
    Katti, Kalpana S.
    Katti, Dinesh R.
    CHEMICAL PHYSICS, 2021, 551
  • [3] Inhibition of SARS-CoV-2 pathogenesis by potent peptides designed by the mutation of ACE2 binding region
    Pourmand, Saeed
    Zareei, Sara
    Shahlaei, Mohsen
    Moradi, Sajad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [4] Revealing the Mechanism of SARS-CoV-2 Spike Protein Binding With ACE2
    Xie, Yixin
    Du, Dan
    Karki, Chitra B.
    Guo, Wenhan
    Lopez-Hernandez, Alan E.
    Sun, Shengjie
    Juarez, Brenda Y.
    Li, Haotian
    Wang, Jun
    Li, Lin
    COMPUTING IN SCIENCE & ENGINEERING, 2020, 22 (06) : 21 - 29
  • [5] Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike
    Wrobel, Antoni G.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 81
  • [6] Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization
    Shah, Masaud
    Ahmad, Bilal
    Choi, Sangdun
    Woo, Hyun Goo
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 3402 - 3414
  • [7] Perturbation of ACE2 Structural Ensembles by SARS-CoV-2 Spike Protein Binding
    Uyar, Arzu
    Dickson, Alex
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (09) : 5896 - 5906
  • [8] Biochemical Characterization of SARS-CoV-2 Spike RBD Mutations and Their Impact on ACE2 Receptor Binding
    Hoter, Abdullah
    Naim, Hassan Y.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [9] Binding of SARS-CoV-2/SARS-CoV spike protein with human ACE2 receptor
    Koirala, Rajendra P.
    Thapa, Bidhya
    Khanal, Shyam P.
    Powrel, Jhulan
    Adhikari, Rajendra P.
    Adhikari, Narayan P.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (03):
  • [10] Identification of Hotspot Residues in Binding of SARS-CoV-2 Spike and Human ACE2 Proteins
    Mendis, Jenny
    Kaya, Ekrem
    Kucukkal, Tugba G.
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2021, 20 (07): : 729 - 739