Global dynamics of some periodically forced, monotone difference equations

被引:0
作者
Cushing, JM [1 ]
Henson, SM
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
difference equations; periodic forcing; global attractors; periodic cycles; cycle average;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of periodically forced, monotone difference equations motivated by applications from population dynamics. We give conditions under which there exists a globally attracting cycle and conditions under which the attracting cycle is attenuant.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
[21]   Global behavior of solutions of a periodically forced Sigmoid Beverton-Holt model [J].
Harry, April J. ;
Kent, Candace M. ;
Kocic, Vlajko L. .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :212-234
[22]   Multisummability for some classes of difference equations [J].
Braaksma, BLJ ;
Faber, BF .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (01) :183-+
[23]   Oscillation of some nonlinear difference equations [J].
El-Morshedy, HA ;
Grace, SR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) :10-21
[24]   Generalized attenuant cycles in some discrete periodically forced delay population models [J].
Kocic, V. L. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (10) :1141-1149
[25]   A note on the global stability of generalized difference equations [J].
Liz, E ;
Ferreiro, JB .
APPLIED MATHEMATICS LETTERS, 2002, 15 (06) :655-659
[26]   Attractivity and global stability for linearizable difference equations [J].
Janowski, E. J. ;
Kulenovic, M. R. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (09) :1592-1607
[27]   Iterative oscillation tests for difference equations with several non-monotone arguments [J].
Braverman, E. ;
Chatzarakis, G. E. ;
Stavroulakis, I. P. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (09) :854-874
[28]   Monotone properties of certain classes of solutions of second-order difference equations [J].
Thandapani, E ;
Manuel, MMS ;
Graef, JR ;
Spikes, PW .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (10-12) :291-297
[29]   MONOTONE-METHODS FOR HIGHER-ORDER PARTIAL DIFFERENCE-EQUATIONS [J].
SHENG, Q ;
AGARWAL, RP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (1-3) :291-307
[30]   Asymptotic properties of solutions of some Volterra difference equations and second-order difference equations [J].
Morchalo, Jaroslaw ;
Szmanda, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E801-E811