Feature Fusion-Based Capsule Network for Cross-Subject Mental Workload Classification

被引:2
|
作者
Yu, Yinhu [1 ]
Li, Junhua [1 ,2 ]
机构
[1] Wuyi Univ, Jiangmen 529020, Peoples R China
[2] Univ Essex, Colchester CO4 3SQ, Essex, England
来源
BRAIN INFORMATICS (BI 2022) | 2022年 / 13406卷
关键词
Mental workload classification; Capsule network; Feature fusion; Cross-subject; EEG; Brain connectivity; Power spectral density; PHASE-LOCKING; FUNCTIONAL CONNECTIVITY; TASK; RECOGNITION; RESPONSES; SELECTION;
D O I
10.1007/978-3-031-15037-1_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a complex human-computer interaction system, estimating mental workload based on electroencephalogram (EEG) plays a vital role in the system adaption in accordance with users' mental state. Compared to within-subject classification, cross-subject classification is more challenging due to larger variation across subjects. In this paper, we targeted the cross-subject mental work-load classification and attempted to improve the performance. A capsule network capturing structural relationships between features of power spectral density and brain connectivity was proposed. The comparison results showed that it achieved a cross-subject classification accuracy of 45.11%, which was superior to the compared methods (e.g., convolutional neural network and support vector machine). The results also demonstrated feature fusion positively contributed to the cross-subject workload classification. Our study could benefit the future development of a real-time workload detection system unspecific to subjects.
引用
收藏
页码:164 / 174
页数:11
相关论文
共 50 条
  • [11] Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
    Hua, Yue
    Zhong, Xiaolong
    Zhang, Bingxue
    Yin, Zhong
    Zhang, Jianhua
    BRAIN SCIENCES, 2021, 11 (11)
  • [12] Cross-subject and cross-experimental classification of mental fatigue based on two-stream self-attention network
    Yang, Shuo
    Shan, Aoyang
    Wang, Lei
    Li, Yangzheng
    Liu, Shuo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [13] Estimating distribution shifts for predicting cross-subject generalization in electroencephalography-based mental workload assessment
    Albuquerque, Isabela
    Monteiro, Joao
    Rosanne, Olivier
    Falk, Tiago H. H.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [14] Latent Space Coding Capsule Network for Mental Workload Classification
    Yu, Yinhu
    Bezerianos, Anastasios
    Cichocki, Andrzej
    Li, Junhua
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3417 - 3427
  • [15] A class alignment network based on self-attention for cross-subject EEG classification
    Ma, Sufan
    Zhang, Dongxiao
    Wang, Jiayi
    Xie, Jialiang
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (01):
  • [16] Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion
    Cimtay, Yucel
    Ekmekcioglu, Erhan
    Caglar-Ozhan, Seyma
    IEEE ACCESS, 2020, 8 : 168865 - 168878
  • [17] EEG-based Cross-subject Mental Fatigue Recognition
    Liu, Yisi
    Lan, Zirui
    Cui, Jian
    Sourina, Olga
    Muller-Wittig, Wolfgang
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 247 - 252
  • [18] Cross-Subject Cognitive Workload Recognition Based on EEG and Deep Domain Adaptation
    Zhou, Yueying
    Wang, Pengpai
    Gong, Peiliang
    Wei, Fulin
    Wen, Xuyun
    Wu, Xia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [19] A Cross-Attention-Based Class Alignment Network for Cross-Subject EEG Classification in a Heterogeneous Space
    Ma, Sufan
    Zhang, Dongxiao
    SENSORS, 2024, 24 (21)
  • [20] Cross-subject mental workload recognition using bi-classifier domain adversarial learning
    Zhou, Yueying
    Wang, Pengpai
    Gong, Peiliang
    Wan, Peng
    Wen, Xuyun
    Zhang, Daoqiang
    COGNITIVE NEURODYNAMICS, 2025, 19 (01)