Optimized Design of High - flux 2D Magneto-Optical Trapping

被引:0
|
作者
Song Wei [1 ,2 ]
Jia Sen [1 ]
Wang Xianhua [1 ]
Wu Cuigang [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Atomic interferometry; Atomic groups; Anti-Helmholtz coils; 2D-MOT length; Finite element analysis; magnetic field;
D O I
10.1117/12.2506119
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-precision cold atomic interferometry requires a large flux of cold atomic groups, the length of 2D-MOT largely influences the number of cold atomic clusters in the 3D-MOT flux. The longer the 2D-MOT length, the longer the interaction of the atoms with the light field, so that the trajectory of the atom impinges on the inlet of the differential pump tube so that its divergence is small enough to reach the tube, but the length of 2D-MOT is not the longer,the better.There are two reasons for this: first, higher atomic flux and faster atoms are trapped as the length of 2D-MOT increases, resulting in an increase in the number of collisions between lateral radicals. Second, the average speed in the atomic beam increases.Above an optimum MOT length every increase in length will only add faster atoms to the beam, thus increasing the value for the mean velocity.In summary, choosing the best 2D-MOT length plays a key role in getting the number of cold radicals entering 3D-MOT.In this paper, through mathematical modeling and finite element analysis,2D-MOT race-track anti-Helmholtz coils are numerically calculated.Analyzing the distribution of zero magnetic field for coils of different lengths and zero drift and magnetic field gradient changes caused by the error of asymmetrical coil position, the number of uniform turns and parallelism in the process of processing and assembly.The result provides reliable theoretical guidance for the design and manufacture of the magnetic field system of 2D-MOT high-precision cold-atom interferometers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] 2D Magneto-Optical Trapping of Diatomic Molecules
    Hummon, Matthew T.
    Yeo, Mark
    Stuhl, Benjamin K.
    Collopy, Alejandra L.
    Xia, Yong
    Ye, Jun
    PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [2] Magneto-optical trapping of barium
    De, S.
    Dammalapati, U.
    Jungmann, K.
    Willmann, L.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [3] Magneto-optical trapping of cadmium
    Brickman, K. -A.
    Chang, M. -S.
    Acton, M.
    Chew, A.
    Matsukevich, D.
    Haljan, P. C.
    Bagnato, V. S.
    Monroe, C.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [4] Magneto-optical properties and potential fluctuations in high mobility 2D electron gas
    Martinez, G
    OPTICAL PROPERTIES OF SEMICONDUCTOR NANOSTRUCTURES, 2000, 81 : 45 - 63
  • [5] Magneto-optical trapping of a diatomic molecule
    J. F. Barry
    D. J. McCarron
    E. B. Norrgard
    M. H. Steinecker
    D. DeMille
    Nature, 2014, 512 : 286 - 289
  • [6] Magneto-optical trapping of holmium atoms
    Miao, J.
    Hostetter, J.
    Stratis, G.
    Saffman, M.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [7] Magneto-optical trapping of neutral mercury
    Villwock, P.
    Siol, S.
    Walther, Th.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 65 (1-2): : 251 - 255
  • [8] Magneto-optical trapping of a diatomic molecule
    Barry, J. F.
    McCarron, D. J.
    Norrgard, E. B.
    Steinecker, M. H.
    DeMille, D.
    NATURE, 2014, 512 (7514) : 286 - +
  • [9] Magneto-optical trapping of silver atoms
    Uhlenberg, G
    Dirscherl, J
    Walther, H
    PHYSICAL REVIEW A, 2000, 62 (06): : 063404 - 063401
  • [10] Magneto-optical trapping of chromium atoms
    Bradley, CC
    McClelland, JJ
    Anderson, WR
    Celotta, RJ
    PHYSICAL REVIEW A, 2000, 61 (05): : 6