On the linearity of cross-correlation delay times in finite-frequency tomography

被引:37
|
作者
Mercerat, E. Diego [1 ]
Nolet, Guust [2 ]
机构
[1] CETE Mediterranee, Lab Reg Ponts & Chausees, Nice, France
[2] Univ Nice Sophia Antipolis, Geoazur, Ctr Natl Rech Sci UMR 6526, Observ Cote Azur, Nice, France
基金
欧洲研究理事会;
关键词
Seismic tomography; Computational seismology; Wave propagation; TRAVEL-TIMES; SEISMIC TOMOGRAPHY; WAVE; SCATTERING; INVERSION; VELOCITY; KERNELS; BODY;
D O I
10.1093/gji/ggs017
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We explore the validity of the linear relation between cross-correlation delay times and velocity model perturbations that is required for linearized finite-frequency tomography. We estimate delay times from a large number of 'ground truth' seismograms computed with the spectral element method in 3-D models. We find that the observed cross-correlation delays remain sufficiently linear, depending on frequency, for sharp velocity contrasts of up to 10 per cent in a checkerboard model. This significantly extends the domain of linearity beyond that of inversions based on direct waveform differences. A small deviation from linearity can be attributed to the Wielandt effect (i.e. the asymmetry in the effect of positive and negative anomalies on the traveltime). Smoother Gaussian covariance models can have velocity variations twice as large and cross-correlation delay times still remain sufficiently linear for tomographic interpretations.
引用
收藏
页码:681 / 687
页数:7
相关论文
共 40 条
  • [1] Tomography of the 1995 Kobe earthquake area: comparison of finite-frequency and ray approaches
    Tong, Ping
    Zhao, Dapeng
    Yang, Dinghui
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 187 (01) : 278 - 302
  • [2] Finite-Frequency Delay Times of Phase Segments for Body Waves
    Jiang, Yan
    Chen, Xiaofei
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2023, 113 (05) : 1938 - 1959
  • [3] Cross-borehole tomography with correlation delay times
    Mercerat, E. Diego
    Nolet, Guust
    Zaroli, Christophe
    GEOPHYSICS, 2014, 79 (01) : R1 - R12
  • [4] Global finite-frequency S-wave delay-times: how much crust matters
    Dubois, Frederic
    Lambotte, Sophie
    Zaroli, Christophe
    Rivera, Luis
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (03) : 1665 - 1684
  • [5] Global finite-frequency S-wave delay-times: how much crust matters
    Dubois F.
    Lambotte S.
    Zaroli C.
    Rivera L.
    Geophysical Journal International, 2019, 218 (03): : 1665 - 1684
  • [6] Finite-frequency traveltime tomography using the Generalized Rytov approximation
    Feng, B.
    Xu, W.
    Wu, R. S.
    Xie, X. B.
    Wang, H.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (02) : 1412 - 1426
  • [7] Gaussian beam based finite-frequency turning wave tomography
    Geng, Yu
    Xie, Xiao-Bi
    JOURNAL OF APPLIED GEOPHYSICS, 2014, 109 : 71 - 79
  • [8] 3-D Wave-Equation-Based Finite-Frequency Tomography for Ultrasound Computed Tomography
    Martiartu, Naiara Korta
    Boehm, Christian
    Fichtner, Andreas
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (07) : 1332 - 1343
  • [9] Cross-dependence of finite-frequency compressional waveforms to shear seismic wave speeds
    Zhang, Zhigang
    Shen, Yang
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 174 (03) : 941 - 948
  • [10] Optimized discrete wavelet transforms in the cubed sphere with the lifting scheme-implications for global finite-frequency tomography
    Chevrot, Sebastien
    Martin, Roland
    Komatitsch, Dimitri
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 191 (03) : 1391 - 1402