Simulation of heating of the target during high-power impulse magnetron sputtering

被引:9
|
作者
Karzin, V. V. [1 ]
Komlev, A. E. [1 ]
Karapets, K. I. [1 ]
Lebedev, N. K. [1 ]
机构
[1] St Petersburg Electrotech Univ, Dept Phys Elect & Technol, 5 Prof Popov St, St Petersburg 197376, Russia
基金
俄罗斯科学基金会;
关键词
HiPIMS; HiPIMS-EM; Hot target; Magnetron sputtering; Heating simulation; High-rate deposition; DEPOSITION; TEMPERATURE; ZR;
D O I
10.1016/j.surfcoat.2017.11.049
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents the solution of a thermal task connected with the titanium target's heating under the influence of high-power pulses during magnetron sputtering. It is well known that more than 90% of power is absorbed due to the cathode heating. During DCMS mode the heating is not substantial but situation changes radically in HiPIMS mode. Target's temperature can reach values of its material melting. In this case a flux, connected with the target's evaporation is being added to the physical sputtering. It leads to the deposition rate growth.
引用
收藏
页码:269 / 273
页数:5
相关论文
共 50 条
  • [21] Titanium film deposition by high-power impulse magnetron sputtering: Influence of pulse duration
    Jing, F. J.
    Yin, T. L.
    Yukimura, K.
    Sun, H.
    Leng, Y. X.
    Huang, N.
    VACUUM, 2012, 86 (12) : 2114 - 2119
  • [22] The behaviour of arcs in carbon mixed-mode high-power impulse magnetron sputtering
    Tucker, M. D.
    Putman, K. J.
    Ganesan, R.
    Lattemann, M.
    Stueber, M.
    Ulrich, S.
    Bilek, M. M. M.
    McKenzie, D. R.
    Marks, N. A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (14)
  • [23] Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium
    Ganesan, R.
    Treverrow, B.
    Murdoch, B.
    Xie, D.
    Ross, A. E.
    Partridge, J. G.
    Falconer, I. S.
    McCulloch, D. G.
    McKenzie, D. R.
    Bilek, M. M. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (24)
  • [24] Modeling of high power impulse magnetron sputtering discharges with graphite target
    Eliasson, H.
    Rudolph, M.
    Brenning, N.
    Hajihoseini, H.
    Zanaska, M.
    Adriaans, M. J.
    Raadu, M. A.
    Minea, T. M.
    Gudmundsson, J. T.
    Lundin, D.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (11)
  • [25] Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering
    Hajihoseini, Hamidreza
    Kateb, Movaffaq
    Ingvarsson, Snorri Porgeir
    Gudmundsson, Jon Tomas
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2019, 10 : 1914 - 1921
  • [26] Ground state atomic oxygen in high-power impulse magnetron sputtering:a quantitative study
    Britun, Nikolay
    Belosludtsev, Alexandr
    Silva, Tiago
    Snyders, Rony
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (07)
  • [27] Target ion and neutral spread in high power impulse magnetron sputtering
    Hajihoseini, H.
    Brenning, N.
    Rudolph, M.
    Raadu, M. A.
    Lundin, D.
    Fischer, J.
    Minea, T. M.
    Gudmundsson, J. T.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (01):
  • [28] Modeling of high power impulse magnetron sputtering discharges with tungsten target
    Babu, Swetha Suresh
    Rudolph, Martin
    Lundin, Daniel
    Shimizu, Tetsuhide
    Fischer, Joel
    Raadu, Michael A.
    Brenning, Nils
    Gudmundsson, Jon Tomas
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (06)
  • [29] Deposition of AlN Thin Film by High-Power Impulse Magnetron Sputtering with Tilted Sputter Target at Different Working Pressure
    Bin Azman, Zulkifli
    Bin Nayan, Nafarizal
    Bakar, Ahmad Shuhaimi Bin Abu
    Bin Yusop, Zamri
    Bin Mamat, Mohamad Hafiz
    Tahan, Muliana Binti
    Sahari, Norain Binti
    Bin Ahmad, Mohd Yazid
    2020 18TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2020, : 352 - 356
  • [30] Understanding ion and atom fluxes during high-power impulse magnetron sputtering deposition of NbCx films from a compound target
    Farahani, M.
    Kozak, T.
    Pajdarova, A. D.
    Bahr, A.
    Riedl, H.
    Zeman, P.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (06):