Hyperspectral Images Compression Based on Independent Component Analysis ROI-based compression algorithm for hyperspectral images

被引:0
作者
Yang, Yu [1 ]
Liu, Bin [2 ]
Duan, Xiaoping [1 ]
Nian, Yongjian [3 ]
机构
[1] 456 Hosp, Dept Informat, Jinan, Peoples R China
[2] Hlth Informat Ctr, Jinan, Peoples R China
[3] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha, Hunan, Peoples R China
来源
2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014) | 2014年
关键词
hyperspectral images; lossy compression; independent component analysis; rate allocation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper addresses the problem of lossy compression for hyperspectral images and presents an efficient compression algorithm based on FastICA. Firstly, an efficient algorithm for segmentation of hyperspectral images is proposed. Secondly, based on the targets, a lossy compression based on ROI (Region of Interest) is proposed for hyperspectral compression, which employs KLT(Karhunen-Loeve transform) to remove the spectral correlation and DWT(Discrete Wavelet Transform) to remove the spatial correlation. Moreover, scaled-based shift algorithm is used to shift the wavelet coefficients of the interested targets; Finally, SPIHT(Set Partitioned In Hierarchical Tree) algorithm is used to compress each band. Experimental results show that the proposed algorithm can efficiently protect the target information of hyperspectral images even if at low bitrates.
引用
收藏
页码:771 / 777
页数:7
相关论文
共 50 条
  • [31] Clustered DPCM for the lossless compression of hyperspectral images
    Mielikainen, J
    Toivanen, P
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (12): : 2943 - 2946
  • [32] Lossless Compression of Hyperspectral Images using Adaptive Edge-based Prediction
    Wang, Keyan
    Wang, Liping
    Liao, Huilin
    Song, Juan
    Li, Yunsong
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING IX, 2013, 8871
  • [33] Spectral similarity measures for classification in lossy compression of hyperspectral images
    Keränen, P
    Kaarna, A
    Toivanen, P
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VIII, 2003, 4885 : 285 - 296
  • [34] A comparison of lossy compression methods on still and hyperspectral images
    Serra-Sagristà, J
    Borrell, J
    MATHEMATICS OF DATA/IMAGE CODING, COMPRESSION, AND ENCRYPTION V, WITH APPLICATIONS, 2002, 4793 : 107 - 118
  • [35] Feature Preserving Compression for Hyperspectral Remote Sensing Images
    Feng, Yan
    Lv, Jiakai
    Su, Jinshan
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 3834 - +
  • [36] Hierarchical GRID interpolation under hyperspectral images compression
    Gashnikov M.V.
    Glumov N.I.
    Optical Memory and Neural Networks, 2014, 23 (4) : 246 - 253
  • [37] Predictor analysis for onboard lossy predictive compression of multispectral and hyperspectral images
    Ricci, Marco
    Magli, Enrico
    JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
  • [38] An assessment of independent component analysis for detection of military targets from hyperspectral images
    Tiwari, K. C.
    Arora, M. K.
    Singh, D.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2011, 13 (05): : 730 - 740
  • [39] Lossy compression of hyperspectral images based on noise parameters estimation and variance stabilizing transform
    Zemliachenko, Alexander N.
    Kozhemiakin, Ruslan A.
    Uss, Mikhail L.
    Abramov, Sergey K.
    Ponomarenko, Nikolay N.
    Lukin, Vladimir V.
    Vozel, Benoit
    Chehdi, Kacem
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [40] Hybrid Compression of Hyperspectral Images Based on PCA With Pre-Encoding Discriminant Information
    Lee, Chulhee
    Youn, Sungwook
    Jeong, Taeuk
    Lee, Eunjae
    Serra-Sagrista, Joan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (07) : 1491 - 1495