Testing for jumps in the presence of smooth changes in trends of nonstationary time series

被引:7
作者
Zhang, Ting [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 01期
基金
美国国家科学基金会;
关键词
Abrupt and smooth changes; change points; local linear estimation; nonparametric hypothesis testing; nonparametric jump detection; nonstationary processes; LOCALLY STATIONARY-PROCESSES; CHANGE-POINT ESTIMATION; NONPARAMETRIC REGRESSION; INFERENCE; MODELS; SELECTION; MATRICES; CURVE; FIT;
D O I
10.1214/16-EJS1127
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric smoothing methods have been widely used in trend analysis. However, the inference procedure usually requires the crucial assumption that the underlying trend function is smooth. This paper considers the situation where the trend function has potential jumps in addition to smooth changes. In order to determine the existence of jumps, we propose a nonparametric test that can survive under dependent and nonstationary errors, where existing tests assuming independence or stationarity can fail. When the existence of jumps is affirmative, we further consider the problem of estimating the number, location and size of jumps. The results are illustrated via both Monte Carlo simulations and a real data example.
引用
收藏
页码:706 / 735
页数:30
相关论文
共 49 条
  • [1] Structural breaks in time series
    Aue, Alexander
    Horvath, Lajos
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (01) : 1 - 16
  • [2] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (01) : 199 - 227
  • [3] SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES
    BICKEL, PJ
    ROSENBLA.M
    [J]. ANNALS OF STATISTICS, 1973, 1 (06) : 1071 - 1095
  • [4] Testing for Smooth Structural Changes in Time Series Models via Nonparametric Regression
    Chen, Bin
    Hong, Yongmiao
    [J]. ECONOMETRICA, 2012, 80 (03) : 1157 - 1183
  • [5] On the Kullback-Leibler information divergence of locally stationary processes
    Dahlhaus, R
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 62 (01) : 139 - 168
  • [6] Statistical inference for time-varying ARCH processes
    Dahlhaus, Rainer
    Rao, Suhasini Subba
    [J]. ANNALS OF STATISTICS, 2006, 34 (03) : 1075 - 1114
  • [7] Testing for Parallelism Among Trends in Multiple Time Series
    Degras, David
    Xu, Zhiwei
    Zhang, Ting
    Wu, Wei Biao
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1087 - 1097
  • [8] Quantile Curve Estimation and Visualization for Nonstationary Time Series
    Draghicescu, Dana
    Guillas, Serge
    Wu, Wei Biao
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 1 - 20
  • [9] The increasing intensity of the strongest tropical cyclones
    Elsner, James B.
    Kossin, James P.
    Jagger, Thomas H.
    [J]. NATURE, 2008, 455 (7209) : 92 - 95
  • [10] Fan J., 1996, LOCAL POLYNOMIAL MOD