MULTI-TASK LEARNING FOR SEMANTIC CHANGE DETECTION ON VHR REMOTE SENSING IMAGES

被引:5
作者
Zhou, Yuan [1 ,2 ]
Zhu, Jiahang [1 ,2 ]
Huo, Leigang [3 ]
Huo, Chunlei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Nanning Normal Univ, Nanning, Peoples R China
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
基金
中国国家自然科学基金;
关键词
Change detection; Multi-task learning; Semantic segmentation; Deep learning;
D O I
10.1109/IGARSS46834.2022.9883651
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Remote Sensing Images Change Detection (RSICD) aims to locate the changed regions between bitemporal very-high-resolution (VHR) sensing images. However, existing deep learning-based RSICD methods are from the requirements by practical application, mainly due to the low feature discrimination and limited accuracy. We propose a novel multi-task and multi-temporal encoder-decoder changed detection network (MMNet) for VHR images, which accomplished both semantic segmentation and change detection at the same time. The encoder extracts multi-level contextual information, which contains two semantic segmentation branches (SSB) and a change detection branch (CDB). In this way, change representation constrains semantic representation during training, which introduces a novel loss function to ensure the semantic consistency within the unchanged regions. Furthermore, to utilize multi-level feature representation for enhancing the separability of features, a multi-scale feature fusion module (MFFM) is presented.
引用
收藏
页码:3247 / 3250
页数:4
相关论文
共 50 条
[31]   Multi-task, multi-domain learning: Application to semantic segmentation and pose regression [J].
Fourure, Damien ;
Emonet, Remi ;
Fromont, Elisa ;
Muselet, Damien ;
Neverova, Natalia ;
Tremeau, Alain ;
Wolf, Christian .
NEUROCOMPUTING, 2017, 251 :68-80
[32]   A MULTI-TASK SEMANTIC SEGMENTATION NETWORK FOR THREAT DETECTION IN X-RAY SECURITY IMAGES [J].
Liu, Junhong ;
Li, Baoping .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, :731-735
[33]   Bipartite Graph Attention Autoencoders for Unsupervised Change Detection Using VHR Remote Sensing Images [J].
Jia, Meng ;
Zhang, Cheng ;
Zhao, Zhiqiang ;
Wang, Lei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[34]   EFFICIENT SEMANTIC SEGMENTATION METHOD WITH STRIP POOLING FOR VHR REMOTE SENSING IMAGES [J].
Sheng, Yifan ;
Yang, Junli ;
Lin, Youguang ;
Lei, Yu .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :2759-2762
[35]   Semantic Segmentation via Multi-task, Multi-domain Learning [J].
Fourure, Damien ;
Emonet, Remi ;
Fromont, Elisa ;
Muselet, Damien ;
Tremeau, Alain ;
Wolf, Christian .
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 :333-343
[36]   Multi-scale Contrastive Learning for Building Change Detection in Remote Sensing Images [J].
Xue, Mingliang ;
Huo, Xinyuan ;
Lu, Yao ;
Niu, Pengyuan ;
Liang, Xuan ;
Shang, Hailong ;
Jia, Shucai .
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 :318-329
[37]   Multi-task Learning for Mortality Prediction in LDCT Images [J].
Guo, Hengtao ;
Kruger, Melanie ;
Wang, Ge ;
Kalra, Mannudeep K. ;
Yan, Pingkun .
MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
[38]   Extraction of cropland field parcels with high resolution remote sensing using multi-task learning [J].
Xu, Leilei ;
Yang, Peng ;
Yu, Juanjuan ;
Peng, Fei ;
Xu, Jia ;
Song, Shiran ;
Wu, Yongxing .
EUROPEAN JOURNAL OF REMOTE SENSING, 2023, 56 (01)
[39]   Incremental and Multi-Task Learning Strategies for Coarse-To-Fine Semantic Segmentation [J].
Mel, Mazen ;
Michieli, Umberto ;
Zanuttigh, Pietro .
TECHNOLOGIES, 2020, 8 (01)
[40]   Targeted Change Detection in Remote Sensing Images [J].
Ignatiev, V. ;
Trekin, A. ;
Lobachev, V. ;
Potapov, G. ;
Burnaev, E. .
ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), 2019, 11041