Derivative Riemann solvers for systems of conservation laws and ADER methods

被引:157
作者
Toro, EF
Titarev, VA [1 ]
机构
[1] Univ Trent, Dept Math, Fac Sci, I-38050 Trento, Italy
[2] Univ Trent, Fac Engn, Lab Appl Math, Trento, Italy
基金
英国工程与自然科学研究理事会;
关键词
hyperbolic systems; derivative Riemann problem; piece-wise smooth data; evolved-data Riemann solvers; arbitrary-order schemes; ADER method;
D O I
10.1016/j.jcp.2005.06.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we first briefly review the semi-analytical method [E.F. Toro, V.A. Titarev, Solution of the generalized Riemann problem for advection-reaction equations, Proc. Roy. Soc. London 458 (2018) (2002) 271-281] for solving the derivative Riemann problem for systems of hyperbolic conservation laws with source terms. Next, we generalize it to hyperbolic systems for which the Riemann problem solution is not available. As an application example we implement the new derivative Riemann solver in the high-order finite-volume ADER advection schemes. We provide numerical examples for the compressible Euler equations in two space dimensions which illustrate robustness and high accuracy of the resulting schemes. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:150 / 165
页数:16
相关论文
共 26 条
[1]   A 2ND-ORDER GODUNOV-TYPE SCHEME FOR COMPRESSIBLE FLUID-DYNAMICS [J].
BENARTZI, M ;
FALCOVITZ, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :1-32
[2]   AN ASYMPTOTIC-EXPANSION FOR THE SOLUTION OF THE GENERALIZED RIEMANN PROBLEM .2. APPLICATION TO THE EQUATIONS OF GAS-DYNAMICS [J].
BOURGEADE, A ;
LEFLOCH, P ;
RAVIART, PA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (06) :437-480
[3]   A FINITE-VOLUME HIGH-ORDER ENO SCHEME FOR 2-DIMENSIONAL HYPERBOLIC SYSTEMS [J].
CASPER, J ;
ATKINS, HL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :62-76
[4]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[5]  
DUMBSER M, IN PRESS BUILDING BL
[6]  
Godunov SK., 1959, MAT SBORNIK, V47, P357
[7]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[8]  
Kulikovskii A.G., 2002, MONOGRAPHS SURVEYS P, V118
[9]  
Le Floch Ph, 1988, NONLINEAR ANAL, V5, P179
[10]   INCREASING THE ORDER OF APPROXIMATION OF GODUNOV SCHEME USING SOLUTIONS OF THE GENERALIZED RIEMANN PROBLEM [J].
MENSHOV, IS .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (05) :54-65