共 66 条
A General and Facile Approach to Heterostructured Core/Shell BiVO4/BiOI p-n Junction: Room-Temperature in Situ Assembly and Highly Boosted Visible-Light Photocatalysis
被引:293
作者:
Huang, Hongwei
[1
]
He, Ying
[1
]
Du, Xin
[2
]
Chu, Paul K.
[3
]
Zhang, Yihe
[1
]
机构:
[1] China Univ Geosci, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Sch Mat Sci & Technol, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Dept Chem & Biol Engn, Res Ctr Bioengn & Sensing Technol, Beijing 100083, Peoples R China
[3] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词:
Core/shell heterostructures;
p-n junction;
Photocatalysis;
BiVO4;
BiOI;
ONE-STEP SYNTHESIS;
CORE-SHELL;
GRAPHENE HYBRIDIZATION;
SOLVOTHERMAL SYNTHESIS;
IRRADIATION;
COMPOSITES;
DEGRADATION;
PERFORMANCE;
EFFICIENT;
HETEROJUNCTION;
D O I:
10.1021/acssuschemeng.5b01038
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Development of core/shell heterostructures and semiconductor p-n junctions is of great concern for environmental and energy applications. Herein, we develop a facile in situ deposition route for fabrication of a BiVO4/BiOI composite integrating both the core/shell heterostructure and semiconductor p-n junction at room temperature. In the BiVO4/BiOI core/shell heterostructure, the BiOI nanosheets are evenly assembled on the surface of the BiVO4 cores. The photocatalytic performance is evaluated by monitoring the degradation of the dye model Rhodamine B (RhB), colorless contaminant phenol, and photocurrent generation under visible-light irradiation. The heterostructured BiVO4/BiOI core/shell photocatalyst shows drastically enhanced photocatalysis properties compared to the pristine BiVO4 and BiOI. This remarkable enhancement is attributed to the intimate interfacial interactions derived from the core/shell heterostructure and formation of the p-n junction between the p-type BiOI and n-type BiVO4. Separation and transfer of photogenerated electron hole pairs are hence greatly facilitated, thereby resulting in the improved photocatalytic performance as confirmed by electrochemical, photoelectrochemical, radicals trapping, and superoxide radical (center dot O-2(-)) quantification results. Moreover, the core/shell BiVO4/BiOI also displays high photochemical stability. This work sheds new light on the construction of high-performance photocatalysts with core/shell heterostructures and matchable band structures in a simple and efficient way.
引用
收藏
页码:3262 / 3273
页数:12
相关论文