Chern Classes of Splayed Intersections

被引:4
作者
Aluffi, Paolo [1 ]
Faber, Eleonore [2 ,3 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Univ Toronto Scarborough, Dept Comp & Math Sci, Toronto, ON M1A 1C4, Canada
[3] Inst Mittag Leffler, SE-18260 Djursholm, Sweden
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2015年 / 67卷 / 06期
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Splayed intersection; Chern-Schwartz-MacPherson class; Chern-Fulton class; splayed blowup; Segre class;
D O I
10.4153/CJM-2015-010-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the Chern class relation for the transversal intersection of two nonsingular varieties to a relation for possibly singular varieties, under a splayedness assumption. We show that the relation for the Chern-Schwartz-MacPherson classes holds for two splayed hypersurfaces in a nonsingular variety, and under a strong splayedness assumption for more general subschemes. Moreover, the relation is shown to hold for the Chern-Fulton classes of any two splayed subschemes. The main tool is a formula for Segre classes of splayed subschemes. We also discuss the Chem class relation under the assumption that one of the varieties is a general very ample divisor.
引用
收藏
页码:1201 / 1218
页数:18
相关论文
共 16 条
[2]   Chern classes for singular hypersurfaces [J].
Aluffi, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (10) :3989-4026
[3]  
Aluffi P., 1994, INT MATH RES NOTICES, V11, P455
[4]   Euler characteristics of general linear sections and polynomial Chern classes [J].
Aluffi P. .
Rendiconti del Circolo Matematico di Palermo, 2013, 62 (1) :3-26
[5]   Splayed divisors and their Chern classes [J].
Aluffi, Paolo ;
Faber, Eleonore .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 :563-579
[6]  
EISENBUD D., 2000, GRAD TEXT M, V197
[7]   Towards Transversality of Singular Varieties: Splayed Divisors [J].
Faber, Eleonore .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2013, 49 (03) :393-412
[8]  
FULTON W., 1984, ERGEBNISSE MATH IHRE, V2
[9]   MACPHERSONS CHERN CLASSES OF SINGULAR ALGEBRAIC-VARIETIES [J].
KENNEDY, G .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (09) :2821-2839
[10]  
Kleiman S, 1996, AM J MATH, V118, P529