Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS

被引:55
作者
Alier, M. [1 ]
van Drooge, B. L. [1 ]
Dall'Osto, M. [1 ]
Querol, X. [1 ]
Grimalt, J. O. [1 ]
Tauler, R. [1 ]
机构
[1] Inst Environm Assessment & Water Res IDAEA CSIC, Dept Environm Chem, Barcelona 08034, Catalonia, Spain
关键词
MULTIVARIATE CURVE RESOLUTION; POLYCYCLIC AROMATIC-HYDROCARBONS; POSITIVE MATRIX FACTORIZATION; WESTERN MEDITERRANEAN BASIN; DICARBOXYLIC-ACIDS; FATTY-ACIDS; PHOTOCHEMICAL OXIDATION; PHOTOOXIDATION PRODUCTS; PARTICULATE MATTER; PARTICLE FORMATION;
D O I
10.5194/acp-13-10353-2013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates the contribution of potential sources to the submicron (PM1) organic aerosol (OA) simultaneously detected at an urban background (UB) and a road site (RS) in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September-October 2010). A total of 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by gas chromatography-mass spectrometry (GC-MS). The concentrations of the trace chemical compounds analyzed are herein presented and discussed. Additionally, OA source apportionment was performed by multivariate curve resolution-alternating least squares (MCR-ALS) and six OA components were identified at both sites: two were of primary anthropogenic OA origin and three of secondary OA origin, while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (urban primary organic aerosol, or POA Urban), mainly traffic emissions but also cigarette smoke, contributed 43% (1.5 mu g OC m(-3)) and 18% (0.4 mu g OC m(-3)) to OA at RS and UB, respectively. A secondary primary source - biomass burning (BBOA) - was found in all the samples (average values 7% RS; 12% UB; 0.3 mu g OC m(-3)), but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation (REG.). Three secondary organic aerosol (SOA) components (describing overall 60% of the variance) were observed in the urban ambient PM1. Products of isoprene oxidation (SOA ISO) - i.e. 2-methylglyceric acid, C-5 alkene triols and 2-methyltetrols - showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 mu g m(-3), or 16% and 7 %, at UB and RS, respectively). By contrast, a SOA biogenic component attributed to alpha-pinene oxidation (SOA BIO PIN) presented average concentrations of 0.5 mu g m(-3) at UB (24% of OA) and 0.2 mu g m(-3) at RS (7 %), respectively, suggesting that this SOA component did not impact the two monitoring sites at the same level. A clear anti-correlation was observed between SOA ISO and SOA PIN during nucleation days, surprisingly suggesting that some of the growth of urban freshly nucleating particles may be driven by biogenic alpha-pinene oxidation products but inhibited by isoprene organic compounds. A third SOA component was formed by a mixture of aged anthropogenic and biogenic secondary organic compounds (SOA Aged) that accumulated under stagnant atmospheric conditions, contributing for 12% to OA at RS (0.4 mu g OC m(-3)) and for 18% at UB (0.4 mu g OC m(-3)). A sixth component, formed by C-7-C-9 dicarboxylic acids and detected especially during daytime, was called "urban oxygenated organic aerosol" (OOA Urban) due to its high abundance at urban RS (23 %; 0.8 mu g OC m(-3)) vs. UB (10 %; 0.2 mu g OC m(-3)), with a well-defined daytime maximum. This temporal trend and geographical differentiation suggests that local anthropogenic sources were determining this component. However, the changes of these organic molecules were also influenced by the air mass trajectories, indicating that atmospheric conditions have an influence on this component, although the specific origin on this component remains unclear. It points to a secondary organic component driven by primary urban sources including cooking and traffic (mainly gasoline) activities.
引用
收藏
页码:10353 / 10371
页数:19
相关论文
共 106 条
[1]   Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities [J].
Allan, J. D. ;
Williams, P. I. ;
Morgan, W. T. ;
Martin, C. L. ;
Flynn, M. J. ;
Lee, J. ;
Nemitz, E. ;
Phillips, G. J. ;
Gallagher, M. W. ;
Coe, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (02) :647-668
[2]  
[Anonymous], 2002, Principal components analysis
[3]   Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass [J].
Bahreini, R. ;
Middlebrook, A. M. ;
de Gouw, J. A. ;
Warneke, C. ;
Trainer, M. ;
Brock, C. A. ;
Stark, H. ;
Brown, S. S. ;
Dube, W. P. ;
Gilman, J. B. ;
Hall, K. ;
Holloway, J. S. ;
Kuster, W. C. ;
Perring, A. E. ;
Prevot, A. S. H. ;
Schwarz, J. P. ;
Spackman, J. R. ;
Szidat, S. ;
Wagner, N. L. ;
Weber, R. J. ;
Zotter, P. ;
Parrish, D. D. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[4]   Gas- and particulate-phase specific tracer and toxic organic compounds in environmental tobacco smoke [J].
Bi, XH ;
Sheng, GY ;
Feng, YL ;
Fu, JM ;
Xie, JX .
CHEMOSPHERE, 2005, 61 (10) :1512-1522
[5]   Composition and major sources of organic compounds in urban aerosols [J].
Bi, Xinhui ;
Simoneit, Bernd R. T. ;
Sheng, Guoying ;
Ma, Shexia ;
Fu, Jiamo .
ATMOSPHERIC RESEARCH, 2008, 88 (3-4) :256-265
[6]   An investigation into the traffic-related fraction of isoprene at an urban location [J].
Borbon, A ;
Fontaine, H ;
Veillerot, M ;
Locoge, N ;
Galloo, JC ;
Guillermo, R .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (22) :3749-3760
[7]   Epidemiological evidence of effects of coarse airborne particles on health [J].
Brunekreef, B ;
Forsberg, B .
EUROPEAN RESPIRATORY JOURNAL, 2005, 26 (02) :309-318
[8]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[9]   Formation of secondary organic aerosols through photooxidation of isoprene [J].
Claeys, M ;
Graham, B ;
Vas, G ;
Wang, W ;
Vermeylen, R ;
Pashynska, V ;
Cafmeyer, J ;
Guyon, P ;
Andreae, MO ;
Artaxo, P ;
Maenhaut, W .
SCIENCE, 2004, 303 (5661) :1173-1176
[10]   Hydroxydicarboxylic acids:: Markers for secondary organic aerosol from the photooxidation of α-pinene [J].
Claeys, Magda ;
Szmigielski, Rafal ;
Kourtchev, Ivan ;
Van der Veken, Pieter ;
Vermeylen, Reinhilde ;
Maenhaut, Willy ;
Jaoui, Mohammed ;
Kleindienst, Tadeusz E. ;
Lewandowski, Michael ;
Offenberg, John H. ;
Edney, Edward O. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (05) :1628-1634