The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman

被引:88
作者
Berndtsson, B
机构
[1] Chalmers University of Technology, Department of Mathematics
关键词
plurisubharmonic; pseudoconvex; partial derivative;
D O I
10.5802/aif.1541
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of the extension theorem of Ohsawa-Takegoshi, The same method also gives a generalization of the partial derivative-theorem of Donnelly and Fefferman for the case of (n, 1)-forms.
引用
收藏
页码:1083 / &
页数:13
相关论文
共 13 条
[1]  
AMAR E, 1983, B SCI MATH, V107, P25
[2]   WEIGHTED ESTIMATES FOR PARTIAL-DERIVATIVE DOMAINS IN C [J].
BERNDTSSON, B .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (02) :239-255
[3]  
BERNDTSSON B, 1994, IN PRESS J GEOM ANAL
[4]  
Berndtsson B., 1994, CONTRIBUTIONS COMPLE
[5]   AN ESTIMATE FOR THE BERGMAN DISTANCE ON PSEUDOCONVEX DOMAINS [J].
DIEDERICH, K ;
OHSAWA, T .
ANNALS OF MATHEMATICS, 1995, 141 (01) :181-190
[6]   EXTENSION OF HOLOMORPHIC L(2)-FUNCTIONS WITH WEIGHTED GROWTH-CONDITIONS [J].
DIEDERICH, K ;
HERBORT, G .
NAGOYA MATHEMATICAL JOURNAL, 1992, 126 :141-157
[7]  
HORMANDER L, 1965, ACTA MATH, V113
[8]  
KOHN JJ, NEUMANN PROBLEM CAUC
[9]   THEOREM OF L2 EXTENSION OF HOLOMORPHIC SECTIONS OF A HERMITIAN BUNDLE [J].
MANIVEL, L .
MATHEMATISCHE ZEITSCHRIFT, 1993, 212 (01) :107-122
[10]  
McNeal JD, 1996, MATH RES LETT, V3, P247