Absorption and diffusion of beryllium in graphite, beryllium carbide formation investigated by density functional theory

被引:17
作者
Ferro, Yves [1 ]
Allouche, Alain [1 ]
Linsmeier, Christian [2 ]
机构
[1] Aix Marseille Univ, CNRS, UMR 7345, Lab Phys Interact Ion & Mol, F-13397 Marseille 20, France
[2] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
关键词
ELASTIC BAND METHOD; CHEMICAL EROSION; DEUTERIUM PLASMAS; ADSORPTION; MITIGATION; INTERCALATION; CALCIUM; POINTS; CARBON; STATE;
D O I
10.1063/1.4809552
中图分类号
O59 [应用物理学];
学科分类号
摘要
The formation of beryllium carbide from beryllium and graphite is here investigated. Using simple models and density functional theory calculations, a mechanism leading to beryllium carbide is proposed; it would be (i) first diffusion of beryllium in graphite, (ii) formation of a metastable beryllium-intercalated graphitic compound, and (iii) phase transition to beryllium carbide. The growth of beryllium carbide is further controlled by defects' formations and diffusion of beryllium through beryllium carbide. Rate limiting steps are the formation of defects in beryllium carbide, with estimated activation energies close to 2 eV. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface [J].
Allouche, A. ;
Ferro, Y. .
CARBON, 2006, 44 (15) :3320-3327
[2]   Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction [J].
Amara, H. ;
Latil, S. ;
Meunier, V. ;
Lambin, Ph. ;
Charlier, J.-C. .
PHYSICAL REVIEW B, 2007, 76 (11)
[3]   Influence of thermal treatment on beryllium/carbon formation and fuel retention [J].
Anghel, A. ;
Porosnicu, C. ;
Lungu, C. P. ;
Sugiyama, K. ;
Krieger, C. ;
Roth, J. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 416 (1-2) :9-12
[4]   Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations [J].
Ataca, C. ;
Akturk, E. ;
Ciraci, S. .
PHYSICAL REVIEW B, 2009, 79 (04)
[5]   Mixed-material layer formation on graphite exposed to deuterium plasmas containing beryllium [J].
Baldwin, M. J. ;
Doerner, R. P. ;
Nishijima, D. ;
Schmid, K. ;
Whyte, D. G. ;
Kulpin, J. G. ;
Wright, G. .
JOURNAL OF NUCLEAR MATERIALS, 2006, 358 (2-3) :96-105
[6]   A time resolved study of the mitigation of graphite chemical erosion in deuterium plasmas containing beryllium [J].
Baldwin, M. J. ;
Doerner, R. P. .
NUCLEAR FUSION, 2006, 46 (04) :444-450
[7]   Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases [J].
Barone, Vincenzo ;
Casarin, Maurizio ;
Forrer, Daniel ;
Pavone, Michele ;
Sambi, Mauro ;
Vittadini, Andrea .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) :934-939
[8]  
Bjorkas C., 2009, J PHYS CONDENS MATT, V21
[9]   Modelling of chemical erosion mitigation experiments at PISCES-B using the 3D Monte-Carlo code ERO [J].
Borodin, D. ;
Kirschner, A. ;
Droste, S. ;
Doerner, R. ;
Nishijima, D. ;
Baldwin, M. ;
Pigarov, A. ;
Hollmann, E. ;
Antar, Gh ;
Serayderian, R. ;
Philipps, V. ;
Mertens, Ph ;
Samm, U. .
PHYSICA SCRIPTA, 2007, T128 :127-132
[10]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462