Synergy between the KEAP1/NRF2 and PI3K Pathways Drives Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment

被引:181
作者
Best, Sarah A. [1 ,2 ]
De Souza, David P. [3 ]
Kersbergen, Ariena [1 ]
Policheni, Antonia N. [2 ,4 ]
Dayalan, Saravanan [3 ]
Tull, Dedreia [3 ]
Rathi, Vivek [5 ]
Gray, Daniel H. [2 ,4 ]
Ritchie, Matthew E. [2 ,6 ,7 ]
McConville, Malcolm J. [3 ]
Sutherland, Kate D. [1 ,2 ]
机构
[1] Walter & Eliza Hall Inst Med Res, ACRF Stem Cells & Canc Div, Parkville, Vic 3052, Australia
[2] Univ Melbourne, Dept Med Biol, Parkville, Vic 3052, Australia
[3] Metabol Australia, Mol Sci & Biotechnol Inst Bio21, Parkville, Vic 3052, Australia
[4] Walter & Eliza Hall Inst Med Res, Mol Genet Canc Div, Parkville, Vic 3052, Australia
[5] Univ Melbourne, St Vincents Hosp, Dept Anat Pathol, Fitzroy, Vic 3065, Australia
[6] Walter & Eliza Hall Inst Med Res, Div Mol Med, Parkville, Vic 3052, Australia
[7] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3052, Australia
基金
英国医学研究理事会;
关键词
STEM-CELLS; NRF2; ADENOCARCINOMA; LANDSCAPE; CARCINOMA; BLOCKADE; INFLAMMATION; EXPRESSION; DELETION; ORIGIN;
D O I
10.1016/j.cmet.2018.02.006
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The lung presents a highly oxidative environment, which is tolerated through engagement of tightly controlled stress response pathways. A critical stress response mediator is the transcription factor nuclear factor erythroid-2-related factor 2 (NFE2L2/NRF2), which is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1). Alterations in the KEAP1/NRF2 pathway have been identified in 23% of lung adenocarcinomas, suggesting that deregulation of the pathway is a major cancer driver. We demonstrate that inactivation of Keap1 and Pten in the mouse lung promotes adenocarcinoma formation. Notably, metabolites identified in the plasma of Keap1(f/f)/Pten(f/f) tumor-bearing mice indicate that tumorigenesis is associated with reprogramming of the pentose phosphate pathway. Furthermore, the immune milieu was dramatically changed by Keap1 and Pten deletion, and tumor regression was achieved utilizing immune checkpoint inhibition. Thus, our study highlights the ability to exploit both metabolic and immune characteristics in the detection and treatment of lung tumors harboring KEAP1/NRF2 pathway alterations.
引用
收藏
页码:935 / +
页数:13
相关论文
共 47 条
[21]   RETRACTED: Evidence for Human Lung Stem Cells (Retracted Article) [J].
Kajstura, Jan ;
Rota, Marcello ;
Hall, Sean R. ;
Hosoda, Toru ;
D'Amario, Domenico ;
Sanada, Fumihiro ;
Zheng, Hanqiao ;
Ogorek, Barbara ;
Rondon-Clavo, Carlos ;
Ferreira-Martins, Joao ;
Matsuda, Alex ;
Arranto, Christian ;
Goichberg, Polina ;
Giordano, Giovanna ;
Haley, Kathleen J. ;
Bardelli, Silvana ;
Rayatzadeh, Hussein ;
Liu, Xiaoli ;
Quaini, Federico ;
Liao, Ronglih ;
Leri, Annarosa ;
Perrella, Mark A. ;
Loscalzo, Joseph ;
Anversa, Piero .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (19) :1795-1806
[22]   HBO1 Is Required for H3K14 Acetylation and Normal Transcriptional Activity during Embryonic Development [J].
Kueh, Andrew J. ;
Dixon, Mathew P. ;
Voss, Anne K. ;
Thomas, Tim .
MOLECULAR AND CELLULAR BIOLOGY, 2011, 31 (04) :845-860
[23]   Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses [J].
Lavin, Yonit ;
Kobayashi, Soma ;
Leader, Andrew ;
Amir, El-ad David ;
Elefant, Naama ;
Bigenwald, Camille ;
Remark, Romain ;
Sweeney, Robert ;
Becker, Christian D. ;
Levine, Jacob H. ;
Meinhof, Klaus ;
Chow, Andrew ;
Kim-Shulze, Seunghee ;
Wolf, Andrea ;
Medaglia, Chiara ;
Li, Hanjie ;
Rytlewski, Julie A. ;
Emerson, Ryan O. ;
Solovyov, Alexander ;
Greenbaum, Benjamin D. ;
Sanders, Catherine ;
Vignali, Marissa ;
Beasley, Mary Beth ;
Flores, Raja ;
Gnjatic, Sacha ;
Pe'er, Dana ;
Rahman, Adeeb ;
Amit, Ido ;
Merad, Miriam .
CELL, 2017, 169 (04) :750-765
[24]   voom: precision weights unlock linear model analysis tools for RNA-seq read counts [J].
Law, Charity W. ;
Chen, Yunshun ;
Shi, Wei ;
Smyth, Gordon K. .
GENOME BIOLOGY, 2014, 15 (02)
[25]   Detection of Lung Cancer through Metabolic Changes Measured in Blood Plasma [J].
Louis, Evelyne ;
Adriaensens, Peter ;
Guedens, Wanda ;
Bigirumurame, Theophile ;
Baeten, Kurt ;
Vanhove, Karolien ;
Vandeurzen, Kurt ;
Darquennes, Karen ;
Vansteenkiste, Johan ;
Dooms, Christophe ;
Shkedy, Ziv ;
Mesotten, Liesbet ;
Thomeer, Michiel .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (04) :516-523
[26]   Ionizing Radiation Activates the Nrf2 Antioxidant Response [J].
McDonald, J. Tyson ;
Kim, Kwanghee ;
Norris, Andrew J. ;
Vlashi, Erina ;
Phillips, Tiffany M. ;
Lagadec, Chann ;
Della Donna, Lorenza ;
Ratikan, Josephine ;
Szelag, Heather ;
Hlatky, Lynn ;
McBride, William H. .
CANCER RESEARCH, 2010, 70 (21) :8886-8895
[27]   The Dual Roles of NRF2 in Cancer [J].
Menegon, Silvia ;
Columbano, Amedeo ;
Giordano, Silvia .
TRENDS IN MOLECULAR MEDICINE, 2016, 22 (07) :578-593
[28]   The Keap 1-Nrf2 system in cancers: stress response and anabolic metabolism [J].
Mitsuishi, Yoichiro ;
Motohashi, Hozumi ;
Yamamoto, Masayuki .
FRONTIERS IN ONCOLOGY, 2012, 2
[29]   Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming [J].
Mitsuishi, Yoichiro ;
Taguchi, Keiko ;
Kawatani, Yukie ;
Shibata, Tatsuhiro ;
Nukiwa, Toshihiro ;
Aburatani, Hiroyuki ;
Yamamoto, Masayuki ;
Motohashi, Hozumi .
CANCER CELL, 2012, 22 (01) :66-79
[30]   The blockade of immune checkpoints in cancer immunotherapy [J].
Pardoll, Drew M. .
NATURE REVIEWS CANCER, 2012, 12 (04) :252-264