Nonlinear stability of thin, radially stratified disks

被引:28
作者
Johnson, BM [1 ]
Gammie, CF [1 ]
机构
[1] Univ Illinois, Ctr Theoret Astrophys, Urbana, IL 61801 USA
关键词
accretion; accretion disks; galaxies : nuclei; solar system : formation;
D O I
10.1086/497982
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform local numerical experiments to investigate the nonlinear stability of thin, radially stratified disks. We demonstrate the presence of radial convective instability when the disk is nearly in uniform rotation and show that the net angular momentum transport is slightly inward, consistent with previous investigations of vertical convection. We then show that a convectively unstable equilibrium is stabilized by differential rotation. Convective instability is determined by the Richardson number Ri equivalent to N-2(r)/(q Omega)(2), where Nr is the radial Brunt-Vaisala frequency and q Omega is the shear rate. Classical convective instability in a nonshearing medium ( Ri -> infinity) is suppressed when Ri greater than or similar to -1; i.e., when the shear rate becomes greater than the growth rate. Disks with a nearly Keplerian rotation profile and radial gradients on the order of the disk radius have Ri greater than or similar to -0.01 and are therefore stable to local nonaxisymmetric disturbances. One implication of our results is that the ``baroclinic'' instability recently claimed by Klahr & Bodenheimer is either global or nonexistent. We estimate that our simulations would detect any genuine growth rate greater than or similar to 0.0025 Omega.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 37 条
[1]   Bypass to turbulence in hydrodynamic accretion: Lagrangian analysis of energy growth [J].
Afshordi, N ;
Mukhopadhyay, B ;
Narayan, R .
ASTROPHYSICAL JOURNAL, 2005, 629 (01) :373-382
[2]   Instability, turbulence, and enhanced transport in accretion disks [J].
Balbus, SA ;
Hawley, JF .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :1-53
[3]   Linear analysis of the Hall effect in protostellar disks [J].
Balbus, SA ;
Terquem, C .
ASTROPHYSICAL JOURNAL, 2001, 552 (01) :235-247
[4]  
Binney J., 2008, Galactic dynamics, V2nd ed.
[5]   LOCAL SHEAR INSTABILITIES IN WEAKLY IONIZED, WEAKLY MAGNETIZED DISKS [J].
BLAES, OM ;
BALBUS, SA .
ASTROPHYSICAL JOURNAL, 1994, 421 (01) :163-177
[6]   Numerical simulations of circumstellar disk convection [J].
Cabot, W .
ASTROPHYSICAL JOURNAL, 1996, 465 (02) :874-886
[7]   On hydrodynamic shear turbulence in Keplerian disks: Via transient growth to bypass transition [J].
Chagelishvili, GD ;
Zahn, JP ;
Tevzadze, AG ;
Lominadze, JG .
ASTRONOMY & ASTROPHYSICS, 2003, 402 (02) :401-407
[8]   EXTENSION OF MILES-HOWARD THEOREM TO COMPRESSIBLE FLUIDS [J].
CHIMONAS, G .
JOURNAL OF FLUID MECHANICS, 1970, 43 :833-&
[9]   Linear analysis of the magnetorotational instability, including ambipolar diffusion, with application to protoplanetary disks [J].
Desch, SJ .
ASTROPHYSICAL JOURNAL, 2004, 608 (01) :509-525
[10]   The effect of resistivity on the nonlinear stage of the magnetorotational instability in accretion disks [J].
Fleming, TP ;
Stone, JIM ;
Hawley, JF .
ASTROPHYSICAL JOURNAL, 2000, 530 (01) :464-477