BASICS OF QUANTUM MECHANICS, GEOMETRIZATION AND SOME APPLICATIONS TO QUANTUM INFORMATION

被引:16
作者
Clemente-Gallardo, Jesus [1 ]
机构
[1] Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos, E-50009 Zaragoza, Spain
关键词
Geometric Quantum Mechanics; Kahler manifold; momentum map; Weyl-Wigner formalism; qubits; qutrits; entanglement;
D O I
10.1142/S0219887808003156
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schrodinger framework from this perspective and provide a description of the Weyl-Wigner construction. Finally, after reviewing the basics of the geometric formulation of quantum mechanics, we apply the methods presented to the most interesting cases of finite dimensional Hilbert spaces: those of two, three and four level systems (one qubit, one qutrit and two qubit systems). As a more practical application, we discuss the advantages that the geometric formulation of quantum mechanics can provide us with in the study of situations as the functional independence of entanglement witnesses.
引用
收藏
页码:989 / 1032
页数:44
相关论文
共 42 条
[1]   On the coherent states, displacement operators and quasidistributions associated with deformed quantum oscillators [J].
Aniello, P ;
Man'ko, V ;
Marmo, G ;
Solimeno, S ;
Zaccaria, F .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (06) :718-725
[2]  
[Anonymous], PRINCIPLES QUANTUM M
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   ON THE GLOBAL EXISTENCE OF BOHMIAN MECHANICS [J].
BERNDL, K ;
DURR, D ;
GOLDSTEIN, S ;
PERUZZI, G ;
ZANGHI, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (03) :647-673
[5]   Bicovariant calculus in quantum theory and a generalization of the Gauss law [J].
Bimonte, G ;
Marmo, G ;
Stern, A .
PHYSICS LETTERS B, 2000, 478 (1-3) :358-364
[6]   Geometrization of quantum mechanics [J].
Carinena, J. F. ;
Clemente-Gallardo, J. ;
Marmo, G. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (01) :894-903
[7]  
CARINENA JF, 2007, P 15 INT WORKSH GEOM, V11, P3
[8]  
CHRUSCINSKI D, 2008, REMARKS GEOMETRICAL
[9]   A FUNCTIONAL REPRESENTATION FOR NONCOMMUTATIVE C-ASTERISK-ALGEBRAS [J].
CIRELLI, R ;
MANIA, A ;
PIZZOCCHERO, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1994, 6 (05) :675-697
[10]   QUANTUM-MECHANICS AS AN INFINITE-DIMENSIONAL HAMILTONIAN SYSTEM WITH UNCERTAINTY STRUCTURE .1. [J].
CIRELLI, R ;
MANIA, A ;
PIZZOCCHERO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (12) :2891-2897