A Numerical Study of the Nonlinear Reaction-Diffusion Equation with Different Type of Absorbent Term by Homotopy Analysis Method

被引:2
作者
Gupta, Praveen Kumar [1 ]
Verma, Swati [1 ]
机构
[1] Banasthali Univ, Ctr Math Sci, Dept Math & Stat, Banasthali 304022, India
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2012年 / 67卷 / 10-11期
关键词
Homotopy Analysis Method; Nonlinear Reaction-Diffusion Equation; Partial Differential Equation; External Force; Reaction Term; POROUS-MEDIA; APPROXIMATION;
D O I
10.5560/ZNA.2012-0066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, based on the homotopy analysis method (HAM), a new powerful algorithm is used for the solution of the nonlinear reaction-diffusion equation. The algorithm presents the procedure of constructing a set of base functions and gives the high-order deformation equation in a simple form. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of the solution series by introducing an auxiliary parameter h. The solutions of the problem of presence and absence of absorbent term and external force for different particular cases are presented graphically.
引用
收藏
页码:621 / 627
页数:7
相关论文
共 50 条
[41]   Local projection stabilization virtual element method for the convection-diffusion equation with nonlinear reaction term [J].
Mishra, Sudheer ;
Natarajan, E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 :181-198
[42]   Numerical solution of the advection-reaction-diffusion equation at different scales [J].
Rubio, A. D. ;
Zalts, A. ;
El Hasi, C. D. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (01) :90-95
[43]   Error Analysis of Fully Discrete Data Assimilation Algorithms for Reaction-Diffusion Equation [J].
Wang, Wansheng ;
Jin, Chengyu ;
Huang, Yi .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2025, 17 (03) :840-866
[44]   Finite element analysis of nonlinear reaction-diffusion system of Fitzhugh-Nagumo type with Robin boundary conditions [J].
Al-Juaifri, Ghassan A. ;
Harfash, Akil J. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 :486-517
[45]   Difference scheme of the solution decomposition method for a singularly perturbed parabolic reaction-diffusion equation [J].
Shishkin, G. I. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2010, 25 (03) :261-278
[46]   Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems [J].
Chowdhury, M. S. H. ;
Hashim, I. ;
Abdulaziz, O. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) :371-378
[47]   Superconvergence analysis and extrapolation of a BDF2 fully discrete scheme for nonlinear reaction-diffusion equations [J].
Liang, Conggang ;
Shi, Dongyang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
[48]   Homotopy analysis method for solving multi-term linear and nonlinear diffusion-wave equations of fractional order [J].
Jafari, H. ;
Golbabai, A. ;
Seifi, S. ;
Sayevand, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1337-1344
[49]   Conservative Numerical Method for a System of Semilinear Singularly Perturbed Parabolic Reaction-Diffusion Equations [J].
Shishkina, L. ;
Shishkin, G. .
MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (02) :211-228
[50]   Controlled Picard Method for Solving Nonlinear Fractional Reaction-Diffusion Models in Porous Catalysts [J].
Semary, Mourad S. ;
Hassan, Hany N. ;
Radwan, Ahmed G. .
CHEMICAL ENGINEERING COMMUNICATIONS, 2017, 204 (06) :635-647