A Numerical Study of the Nonlinear Reaction-Diffusion Equation with Different Type of Absorbent Term by Homotopy Analysis Method

被引:2
|
作者
Gupta, Praveen Kumar [1 ]
Verma, Swati [1 ]
机构
[1] Banasthali Univ, Ctr Math Sci, Dept Math & Stat, Banasthali 304022, India
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2012年 / 67卷 / 10-11期
关键词
Homotopy Analysis Method; Nonlinear Reaction-Diffusion Equation; Partial Differential Equation; External Force; Reaction Term; POROUS-MEDIA; APPROXIMATION;
D O I
10.5560/ZNA.2012-0066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, based on the homotopy analysis method (HAM), a new powerful algorithm is used for the solution of the nonlinear reaction-diffusion equation. The algorithm presents the procedure of constructing a set of base functions and gives the high-order deformation equation in a simple form. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of the solution series by introducing an auxiliary parameter h. The solutions of the problem of presence and absence of absorbent term and external force for different particular cases are presented graphically.
引用
收藏
页码:621 / 627
页数:7
相关论文
共 50 条
  • [1] The homotopy analysis method for Cauchy reaction-diffusion problems
    Bataineh, A. Sami
    Noorani, M. S. M.
    Hashim, I.
    PHYSICS LETTERS A, 2008, 372 (05) : 613 - 618
  • [2] The Homotopy Analysis Method for Fractional Cauchy Reaction-Diffusion Problems
    Das, Subir
    Kumar, Rajnesh
    Gupta, Praveen Kumar
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2011, 9
  • [3] A linearization-based computational algorithm of homotopy analysis method for nonlinear reaction-diffusion systems
    Al-Qudah, Alaa
    Odibat, Zaid
    Shawagfeh, Nabil
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 : 505 - 522
  • [4] Solution of a Strongly Coupled Reaction-Diffusion System by the Homotopy Analysis Method
    Ghoreishi, M.
    Ismail, A. I. B. Md
    Rashid, A.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (03) : 471 - 481
  • [5] Superconvergence analysis for nonlinear reaction-diffusion equation with BDF-FEM
    Wang, Junjun
    Shi, Dongyang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4732 - 4743
  • [6] An Approximate Analytical Solution of the Fractional Diffusion Equation with External Force and Different Type of Absorbent Term - Revisited
    Das, S.
    Kumar, R.
    Gupta, P. K.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2010, : 101 - 109
  • [7] A reliable numerical method for solving fractional reaction-diffusion equations
    Yadav, Supriya
    Kumar, Devendra
    Nisar, Kottakkaran Sooppy
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)
  • [8] Homotopy Analysis Method for Bubble Pulsation Equation with Nonlinear Term of Fractional Power
    Zou, D.
    Zong, Z.
    Wang, Z.
    SIXTH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS (ICNM-VI), 2013, : 234 - 239
  • [9] Numerical solution of a nonlinear reaction diffusion equation
    Le Roux, AY
    Le Roux, MN
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (02) : 211 - 237
  • [10] STABILITY AND ERRORS ANALYSIS OF TWO ITERATIVE SCHEMES OF FRACTIONAL STEPS TYPE ASSOCIATED TO A NONLINEAR REACTION-DIFFUSION EQUATION
    Morosanu, Costica
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (05): : 1567 - 1587