State-of-Charge Estimation for Li-Ion Battery using Extended Kalman Filter (EKF) and Central Difference Kalman Filter (CDKF)

被引:0
|
作者
Sangwan, Venu [1 ]
Kumar, Rajesh [1 ]
Rathore, Akshay Kumar [2 ]
机构
[1] MNIT Jaipur, Dept Elect Engn, Jaipur 302017, Rajasthan, India
[2] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
来源
2017 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING | 2017年
关键词
Battery Management System; State of Charge estimation; Battery Electric Vehicle; Li-ion batteries; Extended Kalman Filter; Central Difference Kalman Filter; ELECTRIC VEHICLES; MANAGEMENT;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A precise estimation of the state-of-charge (SOC) is of major importance in battery electric vehicles (BEVs) for prolonging the lifetime of the battery. Firstly, an equivalent circuit using the first-order RC for describing the dynamic behavior of the battery has been developed. Parameters of the battery are identified using the Ageist Spider Monkey Optimization (ASMO) technique. The optimization method uses the anticipated terminal voltage of the battery during operation and error between the anticipated and measured voltage for identification of parameters. The focus of this paper is the implementation of recursive estimation of battery SOC using extended Kalman filter (EKF) and Central Difference Kalman Filter (CDKF) approach. The estimation has an absolute root-mean-square error (RMSE) of less than 4% and an absolute maximum error less than 6% in all circumstances. The test results indicate that CDKF has good performance compared to EKF for the estimation of battery SOC.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Implementing an Extended Kalman Filter for SoC Estimation of a Li-Ion Battery with Hysteresis: A Step-by-Step Guide
    Rzepka, Benedikt
    Bischof, Simon
    Blank, Thomas
    ENERGIES, 2021, 14 (13)
  • [32] A Multitimescale Kalman Filter-Based Estimator of Li-Ion Battery Parameters Including Adaptive Coupling of State-of-Charge and Capacity Estimation
    Maletic, Filip
    Deur, Josko
    Erceg, Igor
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (02) : 692 - 706
  • [33] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [34] Variational Bayesian-Based Maximum Correntropy Cubature Kalman Filter Method for State-of-Charge Estimation of Li-Ion Battery Cells
    Hafez, Ishaq
    Wadi, Ali
    Abdel-Hafez, Mamoun F.
    Hussein, Ala A.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 3090 - 3104
  • [35] Robustness Evaluation of Extended and Unscented Kalman Filter for Battery State of Charge Estimation
    Huang, Chao
    Wang, Zhenhua
    Zhao, Zihan
    Wang, Long
    Lai, Chun Sing
    Wang, Dong
    IEEE ACCESS, 2018, 6 : 27617 - 27628
  • [36] A robust β- extended Kalman filter for state of charge estimation
    Ni, Yunxia
    IONICS, 2024, 30 (01) : 335 - 341
  • [37] State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification
    Shi, Na
    Chen, Zewang
    Niu, Mu
    He, Zhijia
    Wang, Youren
    Cui, Jiang
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [38] Improved extended Kalman filter for state of charge estimation of battery pack
    Sepasi, Saeed
    Ghorbani, Reza
    Liaw, Bor Yann
    JOURNAL OF POWER SOURCES, 2014, 255 : 368 - 376
  • [39] State-of-charge estimation of lithium ion batteries based on adaptive iterative extended Kalman filter
    He, Zhigang
    Li, Yaotai
    Sun, Yanyan
    Zhao, Shichao
    Lin, Chunjing
    Pan, Chaofeng
    Wang, Limei
    JOURNAL OF ENERGY STORAGE, 2021, 39
  • [40] An extended Kalman filter based data-driven method for state of charge estimation of Li-ion batteries
    Liu, Xingtao
    Li, Kun
    Wu, Ji
    He, Yao
    Liu, Xintian
    JOURNAL OF ENERGY STORAGE, 2021, 40