A HYBRID MBFGS AND CBFGS METHOD FOR NONCONVEX MINIMIZATION WITH A GLOBAL COMPLEXITY BOUND

被引:0
|
作者
Zhang, Li [1 ]
Tang, Hui [1 ]
机构
[1] Changsha Univ Sci & Technol, Dept Math, Changsha 410004, Hunan, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2018年 / 14卷 / 04期
关键词
The BFGS method; line search; the global complexity bound; BFGS METHOD; NEWTON METHOD; CONVERGENCE;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a BFGS type method for solving the unconstrained optimization problem, which is a combination of the MBFGS method and the CBFGS method proposed by Li and Fukushima in [4, 5]. This hybrid scheme sufficiently utilizes advantages of both methods, that is, it not only reduces to the standard BFGS method for local strongly convex functions finally but also regularizes nonconvex functions in the singular case. We show that the proposed method converges globally and superlinearly. Moreover, we investigate a global complexity bound for this method, which is O(epsilon(-2)). Some preliminary numerical results are also reported.
引用
收藏
页码:693 / 702
页数:10
相关论文
共 50 条
  • [1] Global convergence of the nonmonotone MBFGS method for nonconvex unconstrained minimization
    Zhou, Weijun
    Zhang, Li
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 40 - 47
  • [2] A modified BFGS method and its global convergence in nonconvex minimization
    Li, DH
    Fukushima, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 129 (1-2) : 15 - 35
  • [3] Global convergence of a nonmonotone Broyden family method for nonconvex unconstrained minimization
    Gonglin Yuan
    Zhan Wang
    Pengyuan Li
    Computational and Applied Mathematics, 2022, 41
  • [4] Global convergence of a nonmonotone Broyden family method for nonconvex unconstrained minimization
    Yuan, Gonglin
    Wang, Zhan
    Li, Pengyuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [5] GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM FOR LINEARLY CONSTRAINED NONSEPARABLE NONCONVEX COMPOSITE PROGRAMMING
    Kong, Weiwei
    Monteiro, Renato D. C.
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 201 - 224
  • [6] Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints
    Kirst, Peter
    Stein, Oliver
    Steuermann, Paul
    TOP, 2015, 23 (02) : 591 - 616
  • [7] Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints
    Peter Kirst
    Oliver Stein
    Paul Steuermann
    TOP, 2015, 23 : 591 - 616
  • [8] A Hybrid Genetic Algorithm for Nonconvex Function Minimization
    M. F. Hussain
    K. S. Al-Sultan
    Journal of Global Optimization, 1997, 11 : 313 - 324
  • [9] A hybrid genetic algorithm for nonconvex function minimization
    Hussain, MF
    AlSultan, KS
    JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (03) : 313 - 324
  • [10] A METHOD FOR MINIMIZATION OF UNIMODAL NONCONVEX FUNCTIONS
    PEREKATOV, AE
    REDKOVSKY, NN
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (10): : 35 - 37