Model category structures arising from Drinfeld vector bundles

被引:22
作者
Estrada, Sergio [2 ]
Asensio, Pedro A. Guil [1 ]
Prest, Mike [3 ]
Trlifaj, Jan [4 ]
机构
[1] Univ Murcia, Dept Matemat, E-30001 Murcia, Spain
[2] Univ Murcia, Dept Matemat Aplicada, E-30001 Murcia, Spain
[3] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[4] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
关键词
Drinfeld vector bundle; Model structure; Flat Mittag-Leffler module; QUASI-COHERENT SHEAVES; MITTAG-LEFFLER MODULES; COTORSION PAIRS; HOMOLOGICAL ALGEBRA; FLAT COVERS; SCHEMES; COHOMOLOGY; COMPLEXES;
D O I
10.1016/j.aim.2012.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a general construction of model category structures on the category C(Qco(X)) of unbounded chain complexes of quasi-coherent sheaves on a semi-separated scheme X. The construction is based on making compatible the filtrations of individual modules of sections at open affine subsets of X. It does not require closure under direct limits as previous methods. We apply it to describe the derived category D(Qco(X)) via various model structures on C(Qco(X)). As particular instances, we recover recent results on the flat model structure for quasi-coherent sheaves. Our approach also includes the case of (infinite-dimensional) vector bundles, and restricted Drinfeld vector bundles. Finally, we prove that the unrestricted case does not induce a model category structure as above in general.
引用
收藏
页码:1417 / 1438
页数:22
相关论文
共 36 条
[1]  
[Anonymous], 2013, ALGEBRAIC GEOM
[2]   RINGS OF PURE GLOBAL DIMENSION ZERO AND MITTAG-LEFFLER MODULES [J].
AZUMAYA, G ;
FACCHINI, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 62 (02) :109-122
[3]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[4]  
Drinfeld V, 2006, PROG MATH, V244, P263
[5]  
Drinfeld V., INFINITE DIMENSIONAL
[6]  
Eklof P C., 2002, Almost free modules: Set-theoretic methods
[7]   On the existence of precovers [J].
Eklof, PC ;
Shelah, S .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (1-2) :173-188
[8]   How to make Ext vanish [J].
Eklof, PC ;
Trlifaj, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :41-51
[9]   HOMOLOGICAL ALGEBRA AND SET-THEORY [J].
EKLOF, PC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 227 (MAR) :207-225
[10]   Gorenstein categories and Tate cohomology on projective schemes [J].
Enochs, E. ;
Estrada, S. ;
Garcia-Rozas, J. R. .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (04) :525-540