Riemann Solitons on Almost Co-Kahler Manifolds

被引:15
作者
Biswas, Gour Gopal [1 ]
Chen, Xiaomin [2 ]
De, Uday Chand [3 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
[2] China Univ Petr, Coll Sci, Beijing 102249, Peoples R China
[3] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
关键词
Riemann flow; Riemann solitons; Almost co-Kahler manifolds; (kappa; mu)-almost co-Kahler manifolds; RICCI SOLITONS; COKAHLER; TENSORS;
D O I
10.2298/FIL2204403B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the present paper is to characterize almost co-Kahler manifolds whose metrics are the Riemann solitons. At first we provide a necessary and sufficient condition for the metric of a 3-dimensional manifold to be Riemann soliton. Next it is proved that if the metric of an almost co-Kahler manifold is a Riemann soliton with the soliton vector field xi, then the manifold is flat. It is also shown that if the metric of a (kappa, mu)-almost co-Kahler manifold with kappa < 0 is a Riemann soliton, then the soliton is expanding and kappa,mu, lambda satisfies a relation. We also prove that there does not exist gradient almost Riemann solitons on (kappa, mu)-almost co-Kahler manifolds with kappa < 0. Finally, the existence of a Riemann soliton on a three dimensional almost co-Kahler manifold is ensured by a proper example.
引用
收藏
页码:1403 / 1413
页数:11
相关论文
共 33 条
[1]   A CLASS OF phi-RECURRENT ALMOST COSYMPLECTIC SPACE [J].
Balkan, Yavuz Selim ;
Uddin, Siraj ;
Alkhaldi, Ali H. .
HONAM MATHEMATICAL JOURNAL, 2018, 40 (02) :293-304
[2]  
Blair D.E., 1967, J. Differential Geometry, V1, P331
[3]  
Blair D. E, 2010, RIEMANNIAN GEOMETRY, V203
[4]   A SURVEY ON COSYMPLECTIC GEOMETRY [J].
Cappelletti-Montano, Beniamino ;
De Nicola, Antonio ;
Yudin, Ivan .
REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (10)
[5]  
Chen X. M., 2021, INT J GEOM METHODS M, V18
[6]   Cotton solitons on almost cokahler 3-manifolds [J].
Chen, Xiaomin .
QUAESTIONES MATHEMATICAE, 2021, 44 (08) :1055-1075
[7]   Almost quasi-Yamabe solitons on almost cosymplectic manifolds [J].
Chen, Xiaomin .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (05)
[8]   Einstein-Weyl structures on almost cosymplectic manifolds [J].
Chen, Xiaomin .
PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (02) :191-203
[9]  
Dacko P., 2000, Balkan J. Geom. Appl, V5, P47
[10]  
Dacko P., 2005, Banach Center Publ., V69, P211