DECOMPOSABLY-GENERATED MODULES OF SIMPLE LIE ALGEBRAS

被引:0
作者
He, Junhua [1 ]
Tan, Youjun [1 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
关键词
Orthogonal modules; decomposably-generated modules;
D O I
10.1142/S0219498811005415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that there are finitely many irreducible finite-dimensional orthogonal modules V (up to isomorphism) over any complex simple Lie algebras such that Spin(0)(V) is decomposably-generated in the sense of Panyushev [The exterior algebra and "Spin" of an orthogonal g-module, Trans. Groups 6 (2001) 371-396]. The case of simple Lie algebras of type A is discussed.
引用
收藏
页数:16
相关论文
共 8 条
[1]   CHARACTERS OF IRREDUCIBLE REPRESENTATIONS OF SIMPLE GROUPS .I. GENERAL THEORY [J].
ANTOINE, JP ;
SPEISER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (09) :1226-&
[2]  
Bourbaki N., 2005, Lie Groups and Lie Algebras
[3]  
Carter R.W., 2005, Lie Algebras of Finite and Affine Type
[4]  
[何军华 He Junhua], 2011, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V32, P11
[5]  
Humphreys J.E., 1972, INTRO LIE ALGEBRAS R
[6]   Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the rho-decomposition C(g)=end V-rho circle times C(P), and the g-module structure of Lambda g [J].
Kostant, B .
ADVANCES IN MATHEMATICS, 1997, 125 (02) :275-350
[7]  
ONISHCHIK A. L., 1994, Encyclopaedia of Mathematical Sciences, V41
[8]  
Panyushev DI, 2001, TRANSFORM GROUPS, V6, P371, DOI 10.1007/BF01237253