Abelian and non-abelian second cohomologies of quantized enveloping algebras

被引:37
|
作者
Masuoka, Akira [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词
Hopf algebra; quantized enveloping algebra; cleft extension; the second cohomology; cocycle deformation;
D O I
10.1016/j.jalgebra.2008.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of pointed Hopf algebras including the quantized enveloping algebras, we discuss cleft extensions, cocycle deformations and the second cohomology. We present such a non-standard method of computing the abelian second cohomology that derives information from the non-abelian second cohomology classifying cleft extensions. As a sample computation, a quantum analogue of Whitehead's second lemma for Lie-algebra cohomology is proved. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 47
页数:47
相关论文
共 50 条
  • [21] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [22] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813
  • [23] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [24] Transition from Abelian to non-Abelian quantum liquids in the second Landau level
    Wojs, Arkadiusz
    PHYSICAL REVIEW B, 2009, 80 (04)
  • [25] A non-abelian exterior product and homology of Leibniz algebras
    Donadze, Guram
    Garcia-Martinez, Xabier
    Khmaladze, Emzar
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 217 - 236
  • [26] Extension problems and non-Abelian duality for C*-algebras
    Huef, Astrid An
    Kaliszewski, S.
    Raeburn, Iain
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (02) : 229 - 238
  • [27] Extended Drinfel'd algebras and non-Abelian duality
    Sakatani, Yuho
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (06):
  • [28] ON A NON-ABELIAN VARIETY OF GROUPS WHICH ARE SYMMETRICAL ALGEBRAS
    PLONKA, E
    MATHEMATICA SCANDINAVICA, 1994, 74 (02) : 184 - 190
  • [29] On Non-Abelian Extensions of 3-Lie Algebras
    Song, Li-Na
    Makhlouf, Abdenacer
    Tang, Rong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (04) : 347 - 356
  • [30] A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS
    ELLIS, GJ
    GLASGOW MATHEMATICAL JOURNAL, 1991, 33 : 101 - 120