Abelian and non-abelian second cohomologies of quantized enveloping algebras

被引:37
|
作者
Masuoka, Akira [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词
Hopf algebra; quantized enveloping algebra; cleft extension; the second cohomology; cocycle deformation;
D O I
10.1016/j.jalgebra.2008.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of pointed Hopf algebras including the quantized enveloping algebras, we discuss cleft extensions, cocycle deformations and the second cohomology. We present such a non-standard method of computing the abelian second cohomology that derives information from the non-abelian second cohomology classifying cleft extensions. As a sample computation, a quantum analogue of Whitehead's second lemma for Lie-algebra cohomology is proved. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 47
页数:47
相关论文
共 50 条
  • [11] Non-abelian cohomology and extensions of lie algebras
    Inassaridze, N.
    Khmaladze, E.
    Ladra, M.
    JOURNAL OF LIE THEORY, 2008, 18 (02) : 413 - 432
  • [12] COMMUTATORS OF HAMILTONIAN OPERATORS AND NON-ABELIAN ALGEBRAS
    JORGENSEN, PET
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (01) : 115 - 133
  • [13] On the non-abelian tensor product of Lie algebras
    Salemkar, Ali Reza
    Tavallaee, Hamid
    Mohammadzadeh, Hamid
    Edalatzadeh, Behrouz
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 333 - 341
  • [14] A non-abelian tensor product of Leibniz algebras
    Gnedbaye, AV
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) : 1149 - +
  • [15] Non-Abelian extensions of topological lie algebras
    Neeb, KH
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 991 - 1041
  • [16] Non-Abelian gerbes and enhanced Leibniz algebras
    Strobl, Thomas
    PHYSICAL REVIEW D, 2016, 94 (02)
  • [17] Quantized non-Abelian monopoles on S3
    Maor, Irit
    Mathur, Harsh
    Vachaspati, Tanmay
    PHYSICAL REVIEW D, 2007, 76 (10):
  • [18] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [19] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [20] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418