A new hybrid correction method for short-term load forecasting based on ARIMA, SVR and CSA

被引:55
|
作者
Kavousi-Fard, Abdollah [1 ]
Kavousi-Fard, Farzaneh [1 ]
机构
[1] Islamic Azad Univ, Nourabad Mamasani Branch, Nourabad Mamasani, Iran
关键词
support vector regression; autoregressive integrated moving average; cuckoo search algorithm; short-term load forecasting; self-adaptive modification method; SUPPORT VECTOR MACHINES; DISTRIBUTION FEEDER RECONFIGURATION; NEURAL-NETWORKS; ALGORITHM; MODEL; HYDROGEN;
D O I
10.1080/0952813X.2013.782351
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate load-forecasting problem is a significant and vital issue, especially in the new competitive electricity market. The models that are employed for forecasting purposes would determine how reliable the last forecasted results are. Therefore, this paper proposes a new hybrid correction method based on autoregressive integrated moving average (ARIMA) model, support vector regression (SVR) and cuckoo search algorithm (CSA) to achieve a more reliable forecasting model. The proposed method gets use of the autocorrelation function (ACF) and the partial ACF to search the stationary or non-stationary behaviour of the investigated time series. In the case of non-stationary data, it will be differenced one or more times to become stationary. After that, Akaike information criterion is utilised to find the appropriate ARIMA model such that the linear component of the data would be captured. Therefore, the ARIMA residuals would contain the non-linear components that should be modelled by use of the SVR model. The role of CSA as a successful optimisation algorithm is to find the optimal SVR parameters for more accurate forecasting. Meanwhile, a novel self-adaptive modification method based on CSA is proposed to empower the total search ability of the algorithm effectively. The proposed method is applied to the empirical peak load data of Fars Electrical Power Company in Iran.
引用
收藏
页码:559 / 574
页数:16
相关论文
共 50 条
  • [41] Short-Term Load Forecasting Method Based on EWT and IDBSCAN
    Zhang, Qian
    Zhang, Jinjin
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (02) : 635 - 644
  • [42] A novel economy reflecting short-term load forecasting approach
    Lin, Cheng-Ting
    Chou, Li-Der
    ENERGY CONVERSION AND MANAGEMENT, 2013, 65 : 331 - 342
  • [43] Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning
    Wang, Jiakang
    Liu, Hui
    Zheng, Guangji
    Li, Ye
    Yin, Shi
    ENERGIES, 2023, 16 (11)
  • [44] Short-term hybrid forecasting model of ice storage air-conditioning based on improved SVR
    Cheng, Renyin
    Yu, Junqi
    Zhang, Min
    Feng, Chunyong
    Zhang, Wanhu
    JOURNAL OF BUILDING ENGINEERING, 2022, 50
  • [45] A short-term load forecasting method based on intelligent similar day recognition and deviation correction
    Liu Y.
    Zhou G.
    Liu X.
    Wang Y.
    Zheng Y.
    Shao L.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2019, 47 (12): : 138 - 145
  • [46] Residual LSTM based short-term load forecasting
    Sheng, Ziyu
    An, Zeyu
    Wang, Huiwei
    Chen, Guo
    Tian, Kun
    APPLIED SOFT COMPUTING, 2023, 144
  • [47] A hybrid intelligent algorithm based short-term load forecasting approach
    Hooshmand, Rahmat-Allah
    Amooshahi, Habib
    Parastegari, Moein
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 45 (01) : 313 - 324
  • [48] Short-term power load forecasting based on SKDR hybrid model
    Yuan, Yongliang
    Yang, Qingkang
    Ren, Jianji
    Mu, Xiaokai
    Wang, Zhenxi
    Shen, Qianlong
    Li, Yanan
    ELECTRICAL ENGINEERING, 2024,
  • [49] A hybrid kohonen-based approach for short-term load forecasting
    Gleeson, Brian
    Kechadi, Tahar
    3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, 2006, : 176 - 180
  • [50] Knowledge mining collaborative DESVM correction method in short-term load forecasting
    Dong-xiao Niu
    Jian-jun Wang
    Jin-peng Liu
    Journal of Central South University of Technology, 2011, 18 : 1211 - 1216