Curvilinear Component Analysis for nonlinear dimensionality reduction of hyperspectral images

被引:7
作者
Lennon, M [1 ]
Mercier, G [1 ]
Mouchot, MC [1 ]
Hubert-Moy, L [1 ]
机构
[1] ENST Bretagne, Dept ITI, F-29285 Brest, France
来源
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII | 2002年 / 4541卷
关键词
hyperspectral; dimensionality reduction; curvilinear component analysis;
D O I
10.1117/12.454150
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper presents a multidimensional data nonlinear projection method applied to the dimensionality reduction of hyperspectral images. The method, called Curvilinear Component Analysis (CCA) consists in reproducing at best the topology of the joint distribution of the data in a projection subspace whose dimension is lower than the dimension of the initial space, thus preserving a maximum amount of information. The Curvilinear Distance Analysis (CDA) is an improvement of the CCA that allows data including high nonlinearities to be projected. Its interest for reducing the dimension of hyperspectral images is shown. The results are presented on real hyperspectral images and compared with usual linear projection methods.
引用
收藏
页码:157 / 168
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1997, SPRINGER SERIES INFO
[2]   Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets [J].
Demartines, P ;
Herault, J .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (01) :148-154
[3]  
DEMARTINES P, 1994, THESIS I NATION POLY
[4]  
DONCKERS N, 1999, ESANN 1999 P
[5]   ALGORITHM-97 - SHORTEST PATH [J].
FLOYD, RW .
COMMUNICATIONS OF THE ACM, 1962, 5 (06) :345-345
[6]   ON MEAN ACCURACY OF STATISTICAL PATTERN RECOGNIZERS [J].
HUGHES, GF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) :55-+
[7]   Unsupervised hyperspectral image analysis with projection pursuit [J].
Ifarraguerri, A ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (06) :2529-2538
[8]   Hyperspectral data analysis and supervised feature reduction via projection pursuit [J].
Jimenez, LO ;
Landgrebe, DA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (06) :2653-2667
[9]  
LEE J, 1999, MEMOIRE INGENIEUR U
[10]  
LEE JA, 2000, EUR S ART NEUR NETW, P13