Effect of Extrinsically Introduced Passive Interface Layer on the Performance of Ferroelectric Tunnel Junctions

被引:17
作者
Guo, Rui [1 ,2 ]
Wang, Ying [3 ]
Yoong, Herng Yau [1 ]
Chai, Jianwei [4 ]
Wang, Han [1 ]
Lin, Weinan [1 ]
Chen, Shaohai [1 ]
Yan, Xiaobing [1 ]
Venkatesan, Thirumalai [1 ,2 ,3 ,5 ,6 ]
Ariando [2 ,5 ]
Gruverman, Alexei [7 ,8 ]
Wu, Yihong [3 ]
Chen, Jingsheng [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
[2] Natl Univ Singapore, NUSNNI Nanocore, Singapore 117411, Singapore
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[4] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way,08-01 Innovis, Singapore 138634, Singapore
[5] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[6] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117576, Singapore
[7] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[8] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
基金
新加坡国家研究基金会;
关键词
ferroelectric tunnel junctions; ex situ fabrication process; in situ fabrication process; passive interface layer; ON/OFF ratios; INSULATOR-SEMICONDUCTOR; ELECTRORESISTANCE; TRANSITION; MEMRISTOR; STATES;
D O I
10.1021/acsami.6b15564
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the effect of the top electrode/functional layer interface on the performance of ferroelectric tunnel junctions. Ex situ and in situ fabrication process were used to fabricate the top Pt electrode. With the ex situ fabrication process, one passive layer at the top interface would be induced. Our experimental results show that the passive interface layer of the ex situ devices increases the coercive voltage of the functional BaTiO3 layer and decreases the tunneling current magnitude. However, the ex situ tunneling devices possess more than 1000 times larger ON/OFF ratios than that of the in situ devices with the same size of top electrode.
引用
收藏
页码:5050 / 5055
页数:6
相关论文
共 30 条
[21]   Resistive Switching in All-Oxide Ferroelectric Tunnel Junctions with Ionic Interfaces [J].
Qin, Qi Hang ;
Akaslompolo, Laura ;
Tuomisto, Noora ;
Yao, Lide ;
Majumdar, Sayani ;
Vijayakumar, Jaianth ;
Casiraghi, Arianna ;
Inkinen, Sampo ;
Chen, Binbin ;
Zugarramurdi, Asier ;
Puska, Martti ;
van Dijken, Sebastiaan .
ADVANCED MATERIALS, 2016, 28 (32) :6852-+
[22]   Resistive switching in transition metal oxides [J].
Sawa, Akihito .
MATERIALS TODAY, 2008, 11 (06) :28-36
[23]   Ferroelectric thin films: Review of materials, properties, and applications [J].
Setter, N. ;
Damjanovic, D. ;
Eng, L. ;
Fox, G. ;
Gevorgian, S. ;
Hong, S. ;
Kingon, A. ;
Kohlstedt, H. ;
Park, N. Y. ;
Stephenson, G. B. ;
Stolitchnov, I. ;
Tagantsev, A. K. ;
Taylor, D. V. ;
Yamada, T. ;
Streiffer, S. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (05)
[24]   Applied physics - Tunneling across a ferroelectric [J].
Tsymbal, Evgeny Y. ;
Kohlstedt, Hermann .
SCIENCE, 2006, 313 (5784) :181-183
[25]   Predictive modelling of ferroelectric tunnel junctions [J].
Velev, Julian P. ;
Burton, John D. ;
Zhuravlev, Mikhail Ye ;
Tsymbal, Evgeny Y. .
NPJ COMPUTATIONAL MATERIALS, 2016, 2
[26]   Overcoming the Fundamental Barrier Thickness Limits of Ferroelectric Tunnel Junctions through BaTiO3/SrTiO3 Composite Barriers [J].
Wang, Lingfei ;
Cho, Myung Rae ;
Shin, Yeong Jae ;
Kim, Jeong Rae ;
Das, Saikat ;
Yoon, Jong-Gul ;
Chung, Jin-Seok ;
Noh, Tae Won .
NANO LETTERS, 2016, 16 (06) :3911-3918
[27]  
Wen Z, 2013, NAT MATER, V12, P617, DOI [10.1038/NMAT3649, 10.1038/nmat3649]
[28]  
Yin YW, 2013, NAT MATER, V12, P397, DOI [10.1038/NMAT3564, 10.1038/nmat3564]
[29]   Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier [J].
Zhuravlev, M. Ye. ;
Wang, Y. ;
Maekawa, S. ;
Tsymbal, E. Y. .
APPLIED PHYSICS LETTERS, 2009, 95 (05)
[30]   Giant electroresistance in ferroelectric tunnel junctions [J].
Zhuravlev, MY ;
Sabirianov, RF ;
Jaswal, SS ;
Tsymbal, EY .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)