Effect of Extrinsically Introduced Passive Interface Layer on the Performance of Ferroelectric Tunnel Junctions

被引:17
作者
Guo, Rui [1 ,2 ]
Wang, Ying [3 ]
Yoong, Herng Yau [1 ]
Chai, Jianwei [4 ]
Wang, Han [1 ]
Lin, Weinan [1 ]
Chen, Shaohai [1 ]
Yan, Xiaobing [1 ]
Venkatesan, Thirumalai [1 ,2 ,3 ,5 ,6 ]
Ariando [2 ,5 ]
Gruverman, Alexei [7 ,8 ]
Wu, Yihong [3 ]
Chen, Jingsheng [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
[2] Natl Univ Singapore, NUSNNI Nanocore, Singapore 117411, Singapore
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[4] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way,08-01 Innovis, Singapore 138634, Singapore
[5] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[6] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117576, Singapore
[7] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[8] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
基金
新加坡国家研究基金会;
关键词
ferroelectric tunnel junctions; ex situ fabrication process; in situ fabrication process; passive interface layer; ON/OFF ratios; INSULATOR-SEMICONDUCTOR; ELECTRORESISTANCE; TRANSITION; MEMRISTOR; STATES;
D O I
10.1021/acsami.6b15564
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the effect of the top electrode/functional layer interface on the performance of ferroelectric tunnel junctions. Ex situ and in situ fabrication process were used to fabricate the top Pt electrode. With the ex situ fabrication process, one passive layer at the top interface would be induced. Our experimental results show that the passive interface layer of the ex situ devices increases the coercive voltage of the functional BaTiO3 layer and decreases the tunneling current magnitude. However, the ex situ tunneling devices possess more than 1000 times larger ON/OFF ratios than that of the in situ devices with the same size of top electrode.
引用
收藏
页码:5050 / 5055
页数:6
相关论文
共 30 条
[1]   Scaling of electroresistance effect in fully integrated ferroelectric tunnel junctions [J].
Abuwasib, Mohammad ;
Lu, Haidong ;
Li, Tao ;
Buragohain, Pratyush ;
Lee, Hyungwoo ;
Eom, Chang-Beom ;
Gruverman, Alexei ;
Singisetti, Uttam .
APPLIED PHYSICS LETTERS, 2016, 108 (15)
[2]   Tunnel electroresistance in BiFeO3 junctions: size does matter [J].
Boyn, S. ;
Douglas, A. M. ;
Blouzon, C. ;
Turner, P. ;
Barthelemy, A. ;
Bibes, M. ;
Fusil, S. ;
Gregg, J. M. ;
Garcia, V. .
APPLIED PHYSICS LETTERS, 2016, 109 (23)
[3]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[4]  
Chanthbouala A, 2012, NAT NANOTECHNOL, V7, P101, DOI [10.1038/nnano.2011.213, 10.1038/NNANO.2011.213]
[5]   Giant tunnel electroresistance for non-destructive readout of ferroelectric states [J].
Garcia, V. ;
Fusil, S. ;
Bouzehouane, K. ;
Enouz-Vedrenne, S. ;
Mathur, N. D. ;
Barthelemy, A. ;
Bibes, M. .
NATURE, 2009, 460 (7251) :81-84
[6]   Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale [J].
Gruverman, A. ;
Wu, D. ;
Lu, H. ;
Wang, Y. ;
Jang, H. W. ;
Folkman, C. M. ;
Zhuravlev, M. Ye. ;
Felker, D. ;
Rzchowski, M. ;
Eom, C. -B. ;
Tsymbal, E. Y. .
NANO LETTERS, 2009, 9 (10) :3539-3543
[7]   Functional ferroelectric tunnel junctions on silicon [J].
Guo, Rui ;
Wang, Zhe ;
Zeng, Shengwei ;
Han, Kun ;
Huang, Lisen ;
Schlom, Darrell G. ;
Venkatesan, T. ;
Ariando ;
Chen, Jingsheng .
SCIENTIFIC REPORTS, 2015, 5
[8]   Non-volatile memory based on the ferroelectric photovoltaic effect [J].
Guo, Rui ;
You, Lu ;
Zhou, Yang ;
Lim, Zhi Shiuh ;
Zou, Xi ;
Chen, Lang ;
Ramesh, R. ;
Wang, Junling .
NATURE COMMUNICATIONS, 2013, 4
[9]   UNIFIED DISORDER INDUCED GAP STATE MODEL FOR INSULATOR-SEMICONDUCTOR AND METAL-SEMICONDUCTOR INTERFACES [J].
HASEGAWA, H ;
OHNO, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1986, 4 (04) :1130-1138
[10]   Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions [J].
Hu, Wei Jin ;
Wang, Zhihong ;
Yu, Weili ;
Wu, Tom .
NATURE COMMUNICATIONS, 2016, 7