Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies

被引:298
作者
Sebestyen, Zsolt [1 ]
Prinz, Immo [2 ,3 ]
Dechanet-Merville, Julie [4 ]
Silva-Santos, Bruno [5 ]
Kuball, Jurgen [1 ,6 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Lab Translat Immunol, Utrecht, Netherlands
[2] Hannover Med Sch, Inst Immunol, Hannover, Germany
[3] Ctr Individualized Infect Med CiiM, Hannover, Germany
[4] Univ Bordeaux, CNRS UMR 5164, ImmunoConcept, Equipe Labelisee Ligue Canc, Bordeaux, France
[5] Univ Lisbon, Inst Med Mol, Fac Med, Lisbon, Portugal
[6] Univ Utrecht, Univ Med Ctr Utrecht, Dept Haematol, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
ENGINEERED IMMUNE CELLS; MUTS HOMOLOG 2; ADOPTIVE IMMUNOTHERAPY; ANTIGEN RECEPTOR; ZOLEDRONIC ACID; FREE SURVIVAL; PHASE-I; TUMOR; RECOGNITION; INNATE;
D O I
10.1038/s41573-019-0038-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clinical responses to checkpoint inhibitors used for cancer immunotherapy seemingly require the presence of alpha beta T cells that recognize tumour neoantigens, and are therefore primarily restricted to tumours with high mutational load. Approaches that could address this limitation by engineering alpha beta T cells, such as chimeric antigen receptor T (CAR T) cells, are being investigated intensively, but these approaches have other issues, such as a scarcity of appropriate targets for CAR T cells in solid tumours. Consequently, there is renewed interest among translational researchers and commercial partners in the therapeutic use of gamma delta T cells and their receptors. Overall, gamma delta T cells display potent cytotoxicity, which usually does not depend on tumour-associated (neo)antigens, towards a large array of haematological and solid tumours, while preserving normal tissues. However, the precise mechanisms of tumour-specific gamma delta T cells, as well as the mechanisms for self-recognition, remain poorly understood. In this Review, we discuss the challenges and opportunities for the clinical implementation of cancer immunotherapies based on gamma delta T cells and their receptors.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 165 条
[1]   Clinical and immunological evaluation of zoledronate-activated Vγ9γδ T-cell-based immunotherapy for patients with multiple myeloma [J].
Abe, Yu ;
Muto, Masato ;
Nieda, Mie ;
Nakagawa, Yasunori ;
Nicol, Andrew ;
Kaneko, Touru ;
Goto, Shigenori ;
Yokokawa, Kiyoshi ;
Suzuki, Kenshi .
EXPERIMENTAL HEMATOLOGY, 2009, 37 (08) :956-968
[2]   Human gamma delta T cells: Evolution and ligand recognition [J].
Adams, Erin J. ;
Gu, Siyi ;
Luoma, Adrienne M. .
CELLULAR IMMUNOLOGY, 2015, 296 (01) :31-40
[3]   Delta One T Cells for Immunotherapy of Chronic Lymphocytic Leukemia: Clinical-Grade Expansion/Differentiation and Preclinical Proof of Concept [J].
Almeida, Afonso R. ;
Correia, Daniel V. ;
Fernandes-Platzgummer, Ana ;
da Silva, Claudia L. ;
da Silva, Maria Gomes ;
Anjos, Diogo Remechido ;
Silva-Santos, Bruno .
CLINICAL CANCER RESEARCH, 2016, 22 (23) :5795-5804
[4]   Adjuvant combination therapy with gemcitabine and autologous γδ T-cell transfer in patients with curatively resected pancreatic cancer [J].
Aoki, Taku ;
Viatsushita, Hirokazu ;
Hoshikawa, Mayumi ;
Hasegawa, Kiyoshi ;
Kokudo, Norihiro ;
Kakimi, Kazuhiro .
CYTOTHERAPY, 2017, 19 (04) :473-485
[5]   Isopentenyl pyrophosphate secreted from Zoledronate-stimulated myeloma cells, activates the chemotaxis of γδT cells [J].
Ashihara, Eishi ;
Munaka, Tatsuya ;
Kimura, Shinya ;
Nakagawa, Saori ;
Nakagawa, Yoko ;
Kanai, Masaki ;
Hirai, Hideyo ;
Abe, Hirohisa ;
Miida, Takashi ;
Yamato, Susumu ;
Shoji, Shuichi ;
Maekawa, Taira .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2015, 463 (04) :650-655
[6]   Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments [J].
Barros, Rafael Di Marco ;
Roberts, Natalie A. ;
Dart, Robin J. ;
Vantourout, Pierre ;
Jandke, Anett ;
Nussbaumer, Oliver ;
Deban, Livija ;
Cipolat, Sara ;
Hart, Rosie ;
Iannitto, Maria Luisa ;
Laing, Adam ;
Spencer-Dene, Bradley ;
East, Philip ;
Gibbons, Deena ;
Irving, Peter M. ;
Pereira, Pablo ;
Steinhoff, Ulrich ;
Hayday, Adrian .
CELL, 2016, 167 (01) :203-+
[7]   Phase-I study of Innacell γδ™, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma [J].
Bennouna, Jaafar ;
Bompas, Emmanuelle ;
Neidhardt, Eve Marie ;
Rolland, Frederic ;
Philip, Irene ;
Galea, Celine ;
Salot, Samuel ;
Saiagh, Soraya ;
Audrain, Marie ;
Rimbert, Marie ;
Micheaux, Sylvie Lafaye-de ;
Tiollier, Jerome ;
Negrier, Sylvie .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2008, 57 (11) :1599-1609
[8]   Phase I study of bromohydrin pyrophosphate (BrHPP, IPH 1101), a Vγ9Vδ2 T lymphocyte agonist in patients with solid tumors [J].
Bennouna, Jaafar ;
Levy, Vincent ;
Sicard, Helene ;
Senellart, Helene ;
Audrain, Marie ;
Hiret, Sandrine ;
Rolland, Frederic ;
Bruzzoni-Giovanelli, Heriberto ;
Rimbert, Marie ;
Galea, Celine ;
Tiollier, Jerome ;
Calvo, Fabien .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2010, 59 (10) :1521-1530
[9]   Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells [J].
Benveniste, Patricia M. ;
Roy, Sobhan ;
Nakatsugawa, Munehide ;
Chen, Edward L. Y. ;
Nguyen, Linh ;
Millar, Douglas G. ;
Ohashi, Pamela S. ;
Hirano, Naoto ;
Adams, Erin J. ;
Zuniga-Pflucker, Juan Carlos .
SCIENCE IMMUNOLOGY, 2018, 3 (30)
[10]   Kinase-targeted cancer therapies: progress, challenges and future directions [J].
Bhullar, Khushwant S. ;
Orrego Lagaron, Naiara ;
McGowan, Eileen M. ;
Parmar, Indu ;
Jha, Amitabh ;
Hubbard, Basil P. ;
Rupasinghe, H. P. Vasantha .
MOLECULAR CANCER, 2018, 17